Liczby doskonałe

Liczba doskonałaliczba naturalna, która jest sumą wszystkich swych naturalnych dzielników właściwych (to znaczy od niej mniejszych)[1]. Korzystając z pojęcia funkcji σ, można liczby doskonałe definiować jako te, dla których zachodzi warunek:

Najmniejszą liczbą doskonałą jest , ponieważ Następną jest ponieważ

Kolejnymi są i

Największą znaną obecnie (7 grudnia 2018) liczbą doskonałą jest liczy ona 49 724 095 cyfr w rozwinięciu dziesiętnym[2].

Wszystkie znane liczby doskonałe są parzyste. Nie udało się dotąd znaleźć żadnej liczby doskonałej nieparzystej, ani dowodu, że liczby takie nie istnieją.

Metoda Euklidesa znajdowania liczb doskonałych

W IX księdze Elementów, najstarszym piśmie opisującym liczby doskonałe, Euklides podał sposób znajdowania liczb doskonałych parzystych[3]:

należy obliczać sumy kolejnych potęg dwójki Jeżeli któraś z otrzymanych sum okaże się liczbą pierwszą, należy pomnożyć ją przez ostatni składnik i otrzymamy liczbę doskonałą.

Sposób podany przez Euklidesa każe badać kolejno sumy:

Są to sumy ciągu geometrycznego o ilorazie więc mają one postać Jeśli któraś z tych liczb okaże się liczbą pierwszą, to jest liczbą doskonałą.

Własności

Leonhard Euler udowodnił, że każda liczba doskonała parzysta ma postać gdzie jest liczbą pierwszą (nietrudno pokazać, że wtedy również jest liczbą pierwszą) – daje to wzajemnie jednoznaczną odpowiedniość liczb doskonałych parzystych z liczbami pierwszymi Mersenne’a.

Euler udowodnił, że każda liczba doskonała nieparzysta musi być postaci gdzie jest liczbą pierwszą postaci Wiadomo też, że jeśli liczba taka istnieje, to musi być większa od

Zobacz też

Przypisy

  1. liczba doskonała, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-10-08].
  2. List of known Mersenne prime numbers – PrimeNet [online], www.mersenne.org [dostęp 2020-02-19] (ang.).
  3. H.N. Jahnke, A history of analysis, Providence, RI: American Mathematical Society, 2003, s. 3-4, ISBN 0-8218-2623-9, OCLC 51607350 [dostęp 2021-07-19].

Bibliografia

Linki zewnętrzne

Polskojęzyczne

publikacja w otwartym dostępie – możesz ją przeczytać Nagrania na YouTube [dostęp 2024-09-04]:

Anglojęzyczne

Read other articles:

Terminal Jombor (Jawa: ꦠꦼꦂꦩꦶꦤꦭ꧀​ꦗꦺꦴꦩ꧀ꦧꦺꦴꦂ) atau dikenal dengan masyarakat setempat sebagai Terminal Sleman) merupakan terminal penumpang tipe B yang terletak di Kelurahan Sinduadi, Kecamatan Mlati, Kabupaten Sleman. Terminal ini merupakan terminal akses masuk Kota Yogyakarta dari arah utara. Terminal ini merupakan tempat transit bus antarkota dari Terminal Giwangan bertujuan luar kota (seperti tujuan Semarang, Muria Raya, Jakarta Raya, Merak, dan kota-k...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. U Bein's BridgeU Bein BridgeKoordinat21°53′29″N 96°3′22″E / 21.89139°N 96.05611°E / 21.89139; 96.05611Koordinat: 21°53′29″N 96°3′22″E / 21.89139°N 96.05611°E / 21.89139; 96.05611Mo...

 

 

Jin Ye-solLahir24 September 1985 (umur 38)Seoul, Korea SelatanPendidikanUniversitas Myongji – Teater dan FilmPekerjaanAktrisTahun aktif2009–sekarangAgenHunus Entertainment[1]Tinggi5 ft 5 in (1,65 m) Nama KoreaHangul진예솔 Alih AksaraJin Ye-solMcCune–ReischauerChin Yesol Jin Ye-sol (lahir 24 September 1985) adalah seorang aktris asal Korea Selatan. Ia juga menjadi duta merek untuk My Cherie Closet (MCC).[2] Referensi ^ Moon Wan-sik (October 23...

David FiloDavid Filo, May 2007Lahir20 April 1966 (umur 57)[1]Wisconsin, Amerika SerikatTempat tinggalPalo Alto, California, Amerika SerikatAlmamaterTulane UniversityStanford UniversityPekerjaanPendiri dan Chief Yahoo, Yahoo! Inc.GajiUS$1 per year[2]Kekayaan bersih US $ 1.4 milliar (perkiraan) (Maret 2011)[3]Suami/istriAngela Buenning David Filo (lahir 20 April 1966) adalah pengusaha dari Amerika Serikat yang juga pendiri Yahoo! Inc. bersama dengan Jerry Yang...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan...

 

 

Luka Jović Informasi pribadiNama lengkap Luka JovićTanggal lahir 23 Desember 1997 (umur 26)Tempat lahir Bijeljina, Bosnia dan HerzegovinaTinggi 182 cm (6 ft 0 in)Posisi bermain PenyerangInformasi klubKlub saat ini AC MilanNomor 15Karier junior2005–2014 Red Star BelgradeKarier senior*Tahun Tim Tampil (Gol)2014–2016 Red Star Belgrade 48 (13)2016–2017 Benfica B 18 (4)2016–2019 Benfica 4 (0)2017–2019 → Eintracht Frankfurt (pinjaman) 75 (36)2019–2022 Real Madri...

Political party in East and West Pakistan For other uses, see National Awami Party (disambiguation). National Awami Party National People's PartyUrdu nameنیشنل عوامی پارٹیBengali nameন্যাশনাল আওয়ামী পার্টিAbbreviationNAPLeaderAbdul Hamid Khan BhashaniFoundersAbdul Hamid Khan Bhashani and Yar Mohammad KhanFounded1957 (1957)Dacca, East Pakistan, PakistanDissolvedNovember 30, 1967 (1967-11-30)Merger ofAPPSindh Mah...

 

 

Trade union in South Africa NUMSANational Union of Metalworkers of South AfricaFounded1987HeadquartersJohannesburg, South AfricaLocationSouth AfricaMembers >338,000 (2013)Key peopleAndrew Chirwa, presidentIrvin Jim, general secretaryAffiliationsSAFTUWebsitewww.numsa.org.za The National Union of Metalworkers of South Africa (NUMSA) is the biggest single trade union in South Africa with more than 338,000 members, and prior to its expulsion on 8 November 2014, the largest affiliate of the Con...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

Femme Fatale: Bae Jeong-jaTheatrical posterSutradaraJeong In-yeobProduserKim Tai-sooDitulis olehHan Yoo-lim Yu YeolPemeranYeon Jeong-hieNam Kung-wonJung Yoon-MinPenata musikPark Ji-woongSinematograferLee Seok-ikDistributorTae Chang Films Co., LtdTanggal rilis 14 Juni 1973 (1973-06-14) Durasi119 minutesNegaraSouth KoreaBahasaKorean Femme Fatale:Bae Jeong-ja (요화 배정자 Yohwa Bae Jeongja) adalah film Korea Selatan produksi tahun 1973 bergenre drama yang disutradarai oleh Jeong ...

 

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

Hindi name for edible cannabis preparation Photo of bhang drinkers, from the Indian Hemp Drugs Commission report, 1893 Bhang Process of making bhang in a village in Punjab, India. On the Hindu festival of colors called Holi, it is a customary addition to some intoxicating drinks. Part of a series onCannabis ArtsCulture 420 (chan) Books Magu (deity) Names Religion Judaism Latter-day Saints Sikhism Smoke-in Spiritual use Sports Stoner film Stoner rock Terms Chemistry Cannabinoid receptors Canna...

 

 

Supervillain character from Marvel comics For the singer, see Purpleman. Comics character Purple ManPurple Man as seen on the cover of New Thunderbolts #10 (September 2005).Art by Tom Grummett.Publication informationPublisherMarvel ComicsFirst appearanceDaredevil #4 (November 1964)[1]Created byStan LeeJoe OrlandoIn-story informationAlter egoZebediah KillgraveSpeciesHumanAbilitiesSkilled manipulatorHigh-level intellectMind controlRegeneration The Purple Man (Zebediah Killgrave) is a su...

 

 

The history of condoms goes back at least several centuries, and perhaps beyond. For most of their history, condoms have been used both as a method of birth control, and as a protective measure against sexually transmitted infections such as syphilis, gonorrhea, chlamydia, hepatitis B and more recently HIV/AIDS. Condoms have been made from a variety of materials; prior to the 19th century, chemically treated linen and animal tissue (intestine or bladder) are the best documented varieties. Ru...

Cesano Bosconecomune Cesano Boscone – VedutaPiazza S. Giovanni LocalizzazioneStato Italia Regione Lombardia Città metropolitana Milano AmministrazioneSindacoMarco Pozza (PD) dall'11-06-2024 TerritorioCoordinate45°26′25.55″N 9°05′11.68″E45°26′25.55″N, 9°05′11.68″E (Cesano Boscone) Altitudine119 m s.l.m. Superficie3,94 km² Abitanti23 415[1] (31-3-2024) Densità5 942,89 ab./km² Comuni confinantiCorsico, Milano, Trez...

 

 

Clérieux La mairie. Administration Pays France Région Auvergne-Rhône-Alpes Département Drôme Arrondissement Valence Intercommunalité Valence Romans Agglo Maire Mandat Fabrice Larue 2020-2026 Code postal 26260 Code commune 26096 Démographie Gentilé Clérieuxois, Clérieuxoises Populationmunicipale 1 993 hab. (2021 ) Densité 147 hab./km2 Géographie Coordonnées 45° 04′ 45″ nord, 4° 57′ 36″ est Altitude Min. 141 mMax. 245...

 

 

Structure used to support an overhead power line Transmission towerTransmission tower in Dnipro, UkraineTypeStructure, lattice tower and overhead power lineFirst production 20th century A transmission tower (also electricity pylon, hydro tower, or pylon) is a tall structure, usually a lattice tower made of steel that is used to support an overhead power line. In electrical grids, transmission towers carry high-voltage transmission lines that transport bulk electric power from generating ...

Đối với các định nghĩa khác, xem Chi Lăng (định hướng). Dãy núi Cai Kinh phía tây và cánh đồng Chi Lăng Chi Lăng (支棱) là một cửa ải nổi tiếng trong lịch sử Việt Nam. Nơi đây vốn là một thung lũng có sông Thương chảy qua, trải dài gần 20 km từ sông Hóa đến xã Mai Sao, thuộc huyện Chi Lăng, tỉnh Lạng Sơn. Phía đông thung lũng là dãy núi đất Thái Họa – Bảo Đài, còn phía tây là dãy núi...

 

 

Mexican politician In this Spanish name, the first or paternal surname is Bosques and the second or maternal family name is Saldívar. Gilberto Bosques SaldívarPersonal detailsBorn(1892-07-20)20 July 1892Chiautla de Tapia, Puebla, MexicoDied4 July 1995(1995-07-04) (aged 102)Mexico City, MexicoNationality MexicanSpouseMaría Luisa ManjarrezChildrenLaura María, María Teresa and Gilberto FroylánOccupationDiplomat, politician, journalist Gilberto Bosques Saldívar (20 July 1892 &...