Zatem jeśli jest liczbą Sierpińskiego, to wszystkie liczby w poniższym zbiorze są złożone:
W roku 1960 Wacław Sierpiński wykazał, że istnieje nieskończenie wiele liczb całkowitych spełniających powyższy warunek[1].
Problem Sierpińskiego
Problem Sierpińskiego to zagadnienie znalezienia najmniejszej liczby Sierpińskiego.
W 1962 r., John Selfridge wykazał, że 78 557 jest liczbą Sierpińskiego. Ponadto wykazał on że jeśli to wszystkie liczby postaci posiadają rozkład na czynniki pierwsze zawarte w zbiorze Ponadto w 1967 r. Sierpiński i Selfridge postulowali (lecz nie potrafili wykazać) iż 78 557 jest najmniejszą liczbą Sierpińskiego, a więc jest rozwiązaniem problemu Sierpińskiego. Aby to udowodnić, trzeba wykazać, że wszystkie nieparzyste liczby mniejsze od 78 557 nie są liczbami Sierpińskiego. To znaczy, że istnieje takie że jest liczbą pierwszą[2].
W listopadzie 2007 r. istniało tylko sześć liczb, które nie zostały wykluczone jako możliwe liczby Sierpińskiego i mogą stanowić rozwiązanie problemu[3]. Seventeen or Bust, jest rozproszonym projektem obliczeniowym sprawdzającym te liczby. Jeśli projekt ten odnajdzie liczbę pierwszą właściwej postaci dla każdego z pozostałych to problem Sierpińskiego zostanie ostatecznie rozwiązany.
Znane wyniki
Następujące zostały wykluczone przez projekt Seventeen or Bust.
(ang.) Louis Helm, Phil Moore, Payam Samidoost, George Goldman. Resolution of the Mixed Sierpiński Problem. „Integers: Electronic Journal of Combinatorial Number Theory”. 8 (2008), #A61. [dostęp 2009-02-10]. (ang.).brak numeru strony