Time-translation symmetry

Time-translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time-translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time-translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time-translation symmetry is closely connected, via Noether's theorem, to conservation of energy.[1] In mathematics, the set of all time translations on a given system form a Lie group.

There are many symmetries in nature besides time translation, such as spatial translation or rotational symmetries. These symmetries can be broken and explain diverse phenomena such as crystals, superconductivity, and the Higgs mechanism.[2] However, it was thought until very recently that time-translation symmetry could not be broken.[3] Time crystals, a state of matter first observed in 2017, break time-translation symmetry.[4]

Overview

Symmetries are of prime importance in physics and are closely related to the hypothesis that certain physical quantities are only relative and unobservable.[5] Symmetries apply to the equations that govern the physical laws (e.g. to a Hamiltonian or Lagrangian) rather than the initial conditions, values or magnitudes of the equations themselves and state that the laws remain unchanged under a transformation.[1] If a symmetry is preserved under a transformation it is said to be invariant. Symmetries in nature lead directly to conservation laws, something which is precisely formulated by Noether's theorem.[6]

Symmetries in physics[5]
Symmetry Transformation Unobservable Conservation law
Space-translation absolute position in space momentum
Time-translation absolute time energy
Rotation absolute direction in space angular momentum
Space inversion absolute left or right parity
Time-reversal absolute sign of time Kramers degeneracy
Sign reversion of charge absolute sign of electric charge charge conjugation
Particle substitution distinguishability of identical particles Bose or Fermi statistics
Gauge transformation relative phase between different normal states particle number

Newtonian mechanics

To formally describe time-translation symmetry we say the equations, or laws, that describe a system at times and are the same for any value of and .

For example, considering Newton's equation:

One finds for its solutions the combination:

does not depend on the variable . Of course, this quantity describes the total energy whose conservation is due to the time-translation invariance of the equation of motion. By studying the composition of symmetry transformations, e.g. of geometric objects, one reaches the conclusion that they form a group and, more specifically, a Lie transformation group if one considers continuous, finite symmetry transformations. Different symmetries form different groups with different geometries. Time independent Hamiltonian systems form a group of time translations that is described by the non-compact, abelian, Lie group . TTS is therefore a dynamical or Hamiltonian dependent symmetry rather than a kinematical symmetry which would be the same for the entire set of Hamiltonians at issue. Other examples can be seen in the study of time evolution equations of classical and quantum physics.

Many differential equations describing time evolution equations are expressions of invariants associated to some Lie group and the theory of these groups provides a unifying viewpoint for the study of all special functions and all their properties. In fact, Sophus Lie invented the theory of Lie groups when studying the symmetries of differential equations. The integration of a (partial) differential equation by the method of separation of variables or by Lie algebraic methods is intimately connected with the existence of symmetries. For example, the exact solubility of the Schrödinger equation in quantum mechanics can be traced back to the underlying invariances. In the latter case, the investigation of symmetries allows for an interpretation of the degeneracies, where different configurations to have the same energy, which generally occur in the energy spectrum of quantum systems. Continuous symmetries in physics are often formulated in terms of infinitesimal rather than finite transformations, i.e. one considers the Lie algebra rather than the Lie group of transformations

Quantum mechanics

The invariance of a Hamiltonian of an isolated system under time translation implies its energy does not change with the passage of time. Conservation of energy implies, according to the Heisenberg equations of motion, that .

or:

Where is the time-translation operator which implies invariance of the Hamiltonian under the time-translation operation and leads to the conservation of energy.

Nonlinear systems

In many nonlinear field theories like general relativity or Yang–Mills theories, the basic field equations are highly nonlinear and exact solutions are only known for ‘sufficiently symmetric’ distributions of matter (e.g. rotationally or axially symmetric configurations). Time-translation symmetry is guaranteed only in spacetimes where the metric is static: that is, where there is a coordinate system in which the metric coefficients contain no time variable. Many general relativity systems are not static in any frame of reference so no conserved energy can be defined.

Time-translation symmetry breaking (TTSB)

Time crystals, a state of matter first observed in 2017, break discrete time-translation symmetry.[4]

See also

References

  1. ^ a b Wilczek, Frank (16 July 2015). "3". A Beautiful Question: Finding Nature's Deep Design. Penguin Books Limited. ISBN 978-1-84614-702-9.
  2. ^ Richerme, Phil (18 January 2017). "Viewpoint: How to Create a Time Crystal". Physics. 10. APS Physics: 5. Bibcode:2017PhyOJ..10....5R. doi:10.1103/Physics.10.5. Archived from the original on 2 February 2017.
  3. ^ Else, Dominic V.; Bauer, Bela; Nayak, Chetan (2016). "Floquet Time Crystals". Physical Review Letters. 117 (9): 090402. arXiv:1603.08001. Bibcode:2016PhRvL.117i0402E. doi:10.1103/PhysRevLett.117.090402. ISSN 0031-9007. PMID 27610834. S2CID 1652633.
  4. ^ a b Gibney, Elizabeth (2017). "The quest to crystallize time". Nature. 543 (7644): 164–166. Bibcode:2017Natur.543..164G. doi:10.1038/543164a. ISSN 0028-0836. PMID 28277535. S2CID 4460265.
  5. ^ a b Feng, Duan; Jin, Guojun (2005). Introduction to Condensed Matter Physics. Singapore: World Scientific. p. 18. ISBN 978-981-238-711-0.
  6. ^ Cao, Tian Yu (25 March 2004). Conceptual Foundations of Quantum Field Theory. Cambridge: Cambridge University Press. ISBN 978-0-521-60272-3.

Read other articles:

Gila GamlielLahir24 Februari 1974 (umur 50)Tempat lahirGedera, IsraelKnesset16, 18, 19, 20, 21, 22, 23, 24Faksi yang diwakili di Knesset2003–2006Likud2009–LikudJabatan menteri2015–2020Menteri Kesetaraan Sosial2020–Menteri Perlindungan Lingkungan Hidup Gila Gamliel (Ibrani: גִּלָּה גַּמְלִיאֵל, lahir 24 Februari 1974) adalah seorang politikus asal Israel yang sekarang menjabat sebagai anggota Knesset untuk Likud, dan Menteri Perlindungan Lingkungan Hidup. Ia sebe...

 

 

Stasiun Suzuka鈴鹿駅Stasiun SuzukaLokasi1-11-1 Yabase, Suzuka, Mie(三重県鈴鹿市矢橋一丁目11-1)JepangOperatorIse RailwayJalurJalur IseInformasi lainKode stasiun4SejarahDibuka1973PenumpangFY2010220 per hari Sunting kotak info • L • BBantuan penggunaan templat ini Stasiun Suzuka (鈴鹿駅code: ja is deprecated , Suzuka-eki) adalah sebuah stasiun kereta api di Suzuka, Prefektur Mie, Jepang, yang dioperasikan olehIse Railway. Stasiun tersebut berjarak 3.8 kilometer...

 

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Celengan – berita · surat kabar · buku · cendekiawan · JSTOR Celengan terakota Majapahit, abad 14-15 Masehi. Trowulan, Jawa Timur. (Koleksi Museum Nasional, Jakarta.) Celengan berbentuk ayam Celengan mer...

China-Brasil Earth Resources Satellite 3 (CBERS-3), juga dikenal sebagai Ziyuan I-03 atau Ziyuan 1D, adalah sebuah satelit penginderaan jauh yang ditujukan untuk operasi sebagai bagian dari program China-Brasil Earth Resources Satellite antara China Centre for Resources Satellite Data and Application dan National Institute for Space Research Brasil. Satelit CBERS keempat, hilang dalam kegagalan peluncuran pada bulan Desember 2013. Referensi CBERS-3 & 4 (China-Brazil Earth Resources Satel...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. EzequielInformasi pribadiNama lengkap Ezequiel Santos da SilvaTanggal lahir 9 Maret 1998 (umur 26)Tempat lahir Rio de Janeiro, BrasilTinggi 1,67 m (5 ft 5+1⁄2 in)Posisi bermain GelandangInformasi klubKlub saat ini Sanfrecce H...

 

 

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

 

House museum in Ontario, CanadaBillings Estate MuseumEstablished1975; 49 years ago (1975)LocationOttawa, Ontario, CanadaTypehouse museumWebsite[1] National Historic Site of CanadaOfficial nameBillings House National Historic Site of CanadaDesignated1968 The Billings Estate National Historic Site is a heritage museum in Ottawa, Ontario, Canada. It is located at 2100 Cabot St. in the former home of one of the region's earliest settlers. The oldest wood-framed house in Ottawa ...

 

 

British actress, singer and author (born 1935) DameJulie AndrewsDBEAndrews in 2013BornJulia Elizabeth Wells (1935-10-01) 1 October 1935 (age 88)Walton-on-Thames, Surrey, EnglandOccupationsActresssingerauthorYears active1945–presentWorksFull listSpouses Tony Walton ​ ​(m. 1959; div. 1968)​ Blake Edwards ​ ​(m. 1969; died 2010)​Children3, including Emma Walton HamiltonAwardsFull list Dame...

مستعمرة   تعديل مصدري - تعديل   في السياسة والتاريخ، تعرف المستعمرة[1] بأنها الأراضي الواقعة تحت السيطرة السياسية المباشرة للدولة.[2][3][4] أما في حال المستعمرات القديمة، كانت المدن الدول تنشئ مستعمراتها الخاصة. بعض المستعمرات بلدان تاريخية، بينما مستعم�...

 

 

Prefecture-level city in Tibet. Prefecture-level city in Tibet, ChinaLhasa ལྷ་ས་གྲོང་ཁྱེར།拉萨市Prefecture-level cityView of Lhasa from Potala PalaceLocation of Lhasa prefecture-level city jurisdiction in the Tibet Autonomous RegionCoordinates (Lhasa prefectural government): 29°39′12″N 91°10′19″E / 29.6534°N 91.1719°E / 29.6534; 91.1719CountryChinaAutonomous regionTibetMunicipal seatChengguan DistrictGovernment •&...

 

 

Woolworths LimitedJenisPublikKode emitenASX: WOWIndustriRitelDidirikan1924; 100 tahun lalu (1924)PendiriPerry ChristmasStanley ChattersonCecil Scott WaineGeorge CreedErnest WilliamsKantorpusatBella Vista, New South Wales, AustraliaWilayah operasiAustralia, Selandia Baru, IndiaTokohkunciGordon Cairns, ChairmanGrant O'Brien, CEOPendapatan A$59.56 milyar(2013)Laba bersih A$2.26 milyar(2013)Karyawan202,000 (2011)DivisiSupermarket (Woolworths, Thomas Dux, Food For Less, Flemings)Bensin (...

Musical string instrument AutoharpModern autoharpClassification Board zitherInventor(s)Karl August Gütter, Charles F. ZimmermannRelated instruments Zither, marxophone, dolceola An autoharp or chord zither is a string instrument belonging to the zither family. It uses a series of bars individually configured to mute all strings other than those needed for the intended chord. The term autoharp was once a trademark of the Oscar Schmidt company, but has become a generic designation for all such ...

 

 

Questa voce o sezione sugli argomenti storia e cattolicesimo è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti dei progetti di riferimento 1, 2. Ritratto dell'antipapa Cl...

 

 

Bouldnor CliffBouldnor Battery overlooking the Solent. Bouldnor Cliff lies under the water in front of the cliffs.Shown within the United KingdomLocationBouldnor, Isle of Wight, United KingdomRegionSolentCoordinates50°42′49″N 01°27′50″W / 50.71361°N 1.46389°W / 50.71361; -1.46389HistoryPeriodsMesolithicSite notesConditionSubmerged Bouldnor Cliff is a submerged prehistoric settlement site in the Solent. The site dates from the Mesolithic era and is in appro...

بسمة بنت سعود بن عبد العزيز آل سعود   معلومات شخصية الميلاد 1 مارس 1964 (60 سنة)  الرياض  مواطنة السعودية  الأب سعود بن عبد العزيز آل سعود  عائلة آل سعود  الحياة العملية المدرسة الأم جامعة بيروت العربية  المهنة رائدة أعمال،  وناشطة حقوق الإنسان[1]  اللغ�...

 

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Football Club Atletico Montichiari. Associazione Calcio MontichiariStagione 2010-2011Sport calcio Squadra Montichiari Allenatore Claudio Ottoni Presidente Maurizio Soloni Lega Pro Seconda Divisione8º posto nel girone A. Maggiori presenzeCampionato: Verdi (32) Mi...

 

 

2023 concert tour by Suga Suga Agust D TourTour by SugaPromotional poster for the tourLocationNorth AmericaAsiaAssociated albumAgust DD-2D-DayStart dateApril 26, 2023 (2023-04-26)End dateAugust 6, 2023 (2023-08-06)No. of shows17 in Asia11 in North America28 in totalAttendance318,000[1]Box office$57.1 million[1]Suga concert chronology Suga Agust D Tour(2023) ... Suga Agust D Tour (also known as SUGA | AGUST D TOUR 'D-DAY' after the album release) w...

United States historic placeAdministration Building and Research Tower, S.C. Johnson CompanyU.S. National Register of Historic PlacesU.S. National Historic Landmark 1969 photo of headquarters building with towerShow map of WisconsinShow map of the United StatesLocationRacine, WisconsinCoordinates42°42′49″N 87°47′27″W / 42.71361°N 87.79083°W / 42.71361; -87.79083Built1936ArchitectFrank Lloyd Wright; Peters, Wesley W.Architectural styleStreamline Modern...

 

 

Slow HandsSingel oleh Niall Horandari album FlickerDirilis4 Mei 2017 (2017-05-04)Direkam2017GenrePop, FunkLabelCapitolPenciptaNiall HoranAlexander IzquierdoJohn RyanJulian BunettaRuth Anne CunninghamTobias Jesso Jr.ProduserJulian Bunetta Slow Hands merupakan single kedua penyanyi dan penulis lagu asal Irlandia, Niall Horan. Dirilis setelah lagu single pertama, This Town pada tanggal 4 Mei 2017. Single kedua ini masuk dalam trek keempat dalam album Flicker [1][2] Backgroun...