In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time. The branch of physics describing the motion of objects without reference to their cause is called kinematics, while the branch studying forces and their effect on motion is called dynamics.
If an object is not in motion relative to a given frame of reference, it is said to be at rest, motionless, immobile, stationary, or to have a constant or time-invariant position with reference to its surroundings. Modern physics holds that, as there is no absolute frame of reference, Newton's concept of absolute motion cannot be determined.[1] Everything in the universe can be considered to be in motion.[2]: 20–21
Motion applies to various physical systems: objects, bodies, matterparticles, matter fields, radiation, radiation fields, radiation particles, curvature, and space-time. One can also speak of the motion of images, shapes, and boundaries. In general, the term motion signifies a continuous change in the position or configuration of a physical system in space. For example, one can talk about the motion of a wave or the motion of a quantum particle, where the configuration consists of the probabilities of the wave or particle occupying specific positions.
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.[3] More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system.[4] The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.
If the resultant force acting on a body or an object is not equal to zero, the body will have an acceleration that is in the same direction as the resultant force.
Third law:
When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction onto the first body.
Classical mechanics is fundamentally based on Newton's laws of motion. These laws describe the relationship between the forces acting on a body and the motion of that body. They were first compiled by Sir Isaac Newton in his work Philosophiæ Naturalis Principia Mathematica, which was first published on July 5, 1687. Newton's three laws are:
A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force. (This is known as the law of inertia.)
Force () is equal to the change in momentum per change in time (). For a constant mass, force equals mass times acceleration ( ).
For every action, there is an equal and opposite reaction. (In other words, whenever one body exerts a force onto a second body, (in some cases, which is standing still) the second body exerts the force back onto the first body. and are equal in magnitude and opposite in direction. So, the body that exerts will be pushed backward.)[5]
Newton's three laws of motion were the first to accurately provide a mathematical model for understanding orbiting bodies in outer space. This explanation unified the motion of celestial bodies and the motion of objects on Earth.
In classical mechanics, accurate measurements and predictions of the state of objects can be calculated, such as location and velocity. In quantum mechanics, due to the Heisenberg uncertainty principle, the complete state of a subatomic particle, such as its location and velocity, cannot be simultaneously determined.[7]
Humans, like all known things in the universe, are in constant motion;[2]: 8–9 however, aside from obvious movements of the various external body parts and locomotion, humans are in motion in a variety of ways that are more difficult to perceive. Many of these "imperceptible motions" are only perceivable with the help of special tools and careful observation. The larger scales of imperceptible motions are difficult for humans to perceive for two reasons: Newton's laws of motion (particularly the third), which prevents the feeling of motion on a mass to which the observer is connected, and the lack of an obvious frame of reference that would allow individuals to easily see that they are moving.[9] The smaller scales of these motions are too small to be detected conventionally with human senses.
Universe
Spacetime (the fabric of the universe) is expanding, meaning everything in the universe is stretching, like a rubber band. This motion is the most obscure as it is not physical motion, but rather a change in the very nature of the universe. The primary source of verification of this expansion was provided by Edwin Hubble who demonstrated that all galaxies and distant astronomical objects were moving away from Earth, known as Hubble's law, predicted by a universal expansion.[10]
Galaxy
The Milky Way Galaxy is moving through space and many astronomers believe the velocity of this motion to be approximately 600 kilometres per second (1,340,000 mph) relative to the observed locations of other nearby galaxies. Another reference frame is provided by the Cosmic microwave background. This frame of reference indicates that the Milky Way is moving at around 582 kilometres per second (1,300,000 mph).[11][failed verification]
The Milky Way is rotating around its denseGalactic Center, thus the Sun is moving in a circle within the galaxy's gravity. Away from the central bulge, or outer rim, the typical stellar velocity is between 210 and 240 kilometres per second (470,000 and 540,000 mph).[12] All planets and their moons move with the Sun. Thus, the Solar System is in motion.
Earth
The Earth is rotating or spinning around its axis. This is evidenced by day and night, at the equator the earth has an eastward velocity of 0.4651 kilometres per second (1,040 mph).[13] The Earth is also orbiting around the Sun in an orbital revolution. A complete orbit around the Sun takes one year, or about 365 days; it averages a speed of about 30 kilometres per second (67,000 mph).[14]
Continents
The Theory of Plate tectonics tells us that the continents are drifting on convection currents within the mantle, causing them to move across the surface of the planet at the slow speed of approximately 2.54 centimetres (1 in) per year.[15][16] However, the velocities of plates range widely. The fastest-moving plates are the oceanic plates, with the Cocos Plate advancing at a rate of 75 millimetres (3.0 in) per year[17] and the Pacific Plate moving 52–69 millimetres (2.0–2.7 in) per year. At the other extreme, the slowest-moving plate is the Eurasian Plate, progressing at a typical rate of about 21 millimetres (0.83 in) per year.
Internal body
The human heart is regularly contracting to move blood throughout the body. Through larger veins and arteries in the body, blood has been found to travel at approximately 0.33 m/s. Though considerable variation exists, and peak flows in the venae cavae have been found between 0.1 and 0.45 metres per second (0.33 and 1.48 ft/s).[18] additionally, the smooth muscles of hollow internal organs are moving. The most familiar would be the occurrence of peristalsis, which is where digested food is forced throughout the digestive tract. Though different foods travel through the body at different rates, an average speed through the human small intestine is 3.48 kilometres per hour (2.16 mph).[19] The human lymphatic system is also constantly causing movements of excess fluids, lipids, and immune system related products around the body. The lymph fluid has been found to move through a lymph capillary of the skin at approximately 0.0000097 m/s.[20]
Cells
The cells of the human body have many structures and organelles that move throughout them. Cytoplasmic streaming is a way in which cells move molecular substances throughout the cytoplasm,[21] various motor proteins work as molecular motors within a cell and move along the surface of various cellular substrates such as microtubules, and motor proteins are typically powered by the hydrolysis of adenosine triphosphate (ATP), and convert chemical energy into mechanical work.[22]Vesicles propelled by motor proteins have been found to have a velocity of approximately 0.00000152 m/s.[23]
Particles
According to the laws of thermodynamics, all particles of matter are in constant random motion as long as the temperature is above absolute zero. Thus the molecules and atoms that make up the human body are vibrating, colliding, and moving. This motion can be detected as temperature; higher temperatures, which represent greater kinetic energy in the particles, feel warm to humans who sense the thermal energy transferring from the object being touched to their nerves. Similarly, when lower temperature objects are touched, the senses perceive the transfer of heat away from the body as a feeling of cold.[24]
Subatomic particles
Within the standard atomic orbital model, electrons exist in a region around the nucleus of each atom. This region is called the electron cloud. According to Bohr's model of the atom, electrons have a high velocity, and the larger the nucleus they are orbiting the faster they would need to move. If electrons were to move about the electron cloud in strict paths the same way planets orbit the Sun, then electrons would be required to do so at speeds that would far exceed the speed of light. However, there is no reason that one must confine oneself to this strict conceptualization (that electrons move in paths the same way macroscopic objects do), rather one can conceptualize electrons to be 'particles' that capriciously exist within the bounds of the electron cloud.[25] Inside the atomic nucleus, the protons and neutrons are also probably moving around due to the electrical repulsion of the protons and the presence of angular momentum of both particles.[26]
Light moves at a speed of 299,792,458 m/s, or 299,792.458 kilometres per second (186,282.397 mi/s), in a vacuum. The speed of light in vacuum (or ) is also the speed of all massless particles and associated fields in a vacuum, and it is the upper limit on the speed at which energy, matter, information or causation can travel. The speed of light in vacuum is thus the upper limit for speed for all physical systems.
In addition, the speed of light is an invariant quantity: it has the same value, irrespective of the position or speed of the observer. This property makes the speed of light c a natural measurement unit for speed and a fundamental constant of nature.
In 2019, the speed of light was redefined alongside all seven SI base units using what it calls "the explicit-constant formulation", where each "unit is defined indirectly by specifying explicitly an exact value for a well-recognized fundamental constant", as was done for the speed of light. A new, but completely equivalent, wording of the metre's definition was proposed: "The metre, symbol m, is the unit of length; its magnitude is set by fixing the numerical value of the speed of light in vacuum to be equal to exactly 299792458 when it is expressed in the SI unit m s−1."[27] This implicit change to the speed of light was one of the changes that was incorporated in the 2019 revision of the SI, also termed the New SI.[28]
Some motion appears to an observer to exceed the speed of light. Bursts of energy moving out along the relativistic jets emitted from these objects can have a proper motion that appears greater than the speed of light. All of these sources are thought to contain a black hole, responsible for the ejection of mass at high velocities. Light echoes can also produce apparent superluminal motion.[29] This occurs owing to how motion is often calculated at long distances; oftentimes calculations fail to account for the fact that the speed of light is finite. When measuring the movement of distant objects across the sky, there is a large time delay between what has been observed and what has occurred, due to the large distance the light from the distant object has to travel to reach us. The error in the above naive calculation comes from the fact that when an object has a component of velocity directed towards the Earth, as the object moves closer to the Earth that time delay becomes smaller. This means that the apparent speed as calculated above is greater than the actual speed. Correspondingly, if the object is moving away from the Earth, the above calculation underestimates the actual speed.[30]
Types of motion
Simple harmonic motion – motion in which the body oscillates in such a way that the restoring force acting on it is directly proportional to the body's displacement. Mathematically Force is directly proportional to the negative of displacement. Negative sign signifies the restoring nature of the force. (e.g., that of a pendulum).
^
M. Fischer; U.K. Franzeck; I. Herrig; U. Costanzo; S. Wen; M. Schiesser; U. Hoffmann; A. Bollinger (1 January 1996). "Flow velocity of single lymphatic capillaries in human skin". Am J Physiol Heart Circ Physiol. 270 (1): H358 –H363. doi:10.1152/ajpheart.1996.270.1.H358. PMID8769772.
Laos padaOlimpiadeKode IOCLAOKONKomite Olimpiade Nasional LaosMedali 0 0 0 Total 0 Penampilan Musim Panas19801984198819921996200020042008201220162020 Laos, bernama resmi Republik Demokratik Rakyat Laos telah berkompetisi dalam tujuh Permainan Olimpiade Musim Panas. Negara tersebut tak pernah masuk Permainan Olimpiade Musim Dingin dan juga tak pernah memenangkan sebuah medali Olimpiade. Komite Olimpiade Nasional Laos dibentuk pada 1975 dan resmi diakui oleh Komite Olimpiade Internasional pada ...
Halaman ini berisi artikel tentang perusahaan farmasi. Untuk rumah sakit anak di New Jersey, lihat The Bristol-Myers Squibb Children's Hospital. Bristol Myers SquibbSebuah fasilitas riset dan pengembangan milik Bristol Myers Squibb di Lawrence, New JerseyJenisPublikKode emitenNYSE: BMYKomponen S&P 100Komponen S&P 500IndustriFarmasiDidirikan1887; 136 tahun lalu (1887)PendiriWilliam McLaren Bristol John Ripley Myers E. R. SquibbKantorpusat430 East 29th StreetNew York City, New York...
For other uses, see Nexi (disambiguation). Italian multinational financial technology company You can help expand this article with text translated from the corresponding article in Italian. (November 2017) Click [show] for important translation instructions. View a machine-translated version of the Italian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the transla...
Prakash JhaPrakash Jha dengan Deepika Padukone pengumuman pers film Aarakshan. 2010Lahir27 Februari 1952 (umur 72)Champaran Barat, Bihar, IndiaPekerjaanProduser, Sutradara, Penulis naskah, PemeranTahun aktif1976-sekarangSuami/istriDeepti Naval (1985-1989)AnakDisha JhaSitus webPrakash Jha Productions Prakash Jha (lahir 27 Februari 1952) adalah seorang produser, pemeran, sutradara dan penulis naskah asal India, yang kebanyakan dikenal untuk film-film politik dan sosio-politiknya sepe...
Cet article parle du traité instituant la Communauté européenne et sur son contenu entre 1993 et 2009, pour le traité dans sa forme précédente lire l'article sur le TCEE et pour le traité suivant, voir l'article sur le TFUE. Ne doit pas être confondu avec Traité instituant la Communauté économique européenne. Traité instituant la Communauté européenne Données clés Type de traité Traité constitutif Autre nom Traité de Rome Abréviation TCE Signature 7 février 1992(signatu...
Bagian dari seriGereja Katolik menurut negara Afrika Afrika Selatan Afrika Tengah Aljazair Angola Benin Botswana Burkina Faso Burundi Chad Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Guinea Khatulistiwa Jibuti Kamerun Kenya Komoro Lesotho Liberia Libya Madagaskar Malawi Mali Maroko Mauritania Mauritius Mesir Mozambik Namibia Niger Nigeria Pantai Gading Republik Demokratik Kongo Republik Kongo Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland ...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Taylorcraft Aircraft – news · newspapers · books · scholar · JSTOR (March 2008) (Learn how and when to remove this template message) Taylorcraft AviationCompany typeSubsidiaryIndustryGeneral aviationFounded1935; 89 years ago (1935) in Bradford...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Metania ovogemata Klasifikasi ilmiah Kerajaan: Animalia Upakerajaan: Parazoa Filum: Porifera Kelas: Demospongiae Ordo: Haplosclerida Famili: Metaniidae Genus: Metania Spesies: Metania ovogemata Metania ovogemata adalah spesies spons yang tergolong dala...
Ai to Makoto愛と誠(あいとまこと) MangaPengarangIkki KajiwaraIlustratorTakumi NagayasuPenerbitKodanshaMajalahWeekly Shōnen MagazineTerbit1973 – 1976 Drama audioStasiunNippon Broadcasting SystemTayang perdana4 April 1974 – 8 Oktober 1974 Film laga hidupSutradaraShigeyuki YamaneTayang 13 Juli 1974 (1974-07-13) Durasi89 menit Drama televisiSaluranasliTV TokyoTayang 4 Oktober 1974 – 28 Maret 1975Episode26 Film laga hidup続 愛と誠SutradaraShigeyuki YamaneTayang 15 Maret 1...
Artikel ini bukan mengenai Daftar Gubernur Papua. Wakil Gubernur Papua BaratLambangPetahanalowongsejak 12 Mei 2022Dibentuk24 Juli 2006Pejabat pertamaRahimin Katjong Berikut ini adalah daftar Wakil Gubernur Papua Barat. No Foto Wakil Gubernur Mulai Menjabat Akhir Jabatan Keterangan Gubernur 1 Rahimin Katjong 24 Juli 2006 24 Juli 2011 Abraham Octavianus Atururi Tidak ada 24 Juli 2011 17 Januari 2012 Tanribali Lamo (1) Rahimin Katjong 17 Januari 2012 22 Januari 2015 Meninggal dunia Abraham ...
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (December 2016) (Learn how and when to remove this message)The FrogsThe 11 founding members of the Frogs.Named afterAesops FablesPredecessorThe Colored Vaudeville Benevolent AssociationFormation1908Founded at52 West 153rd Street, New York, New YorkDissolved1920sTypeBenevolent AssociationPurposeTo create an all-Bl...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2023) موسم مولاي عبد الله أمغار البلد المغرب المكان مولاي عبد الله تعديل مصدري - تعديل موسم مولاي عبد الله أمغار هو مهرجان سنوي شعبي خاص بالتراث الم�...
Prime Minister of Japan from 1924 to 1926 In this Japanese name, the surname is Katō. CountKatō Takaaki加藤 高明Prime Minister of JapanIn office11 June 1924 – 28 January 1926MonarchTaishōRegentHirohitoPreceded byKiyoura KeigoSucceeded byWakatsuki Reijirō Personal detailsBorn(1860-01-03)3 January 1860Aisai, Aichi, Tokugawa shogunateDied28 January 1926(1926-01-28) (aged 66)Tokyo, Empire of JapanCause of deathPneumoniaPolitical partyKenseikaiSpouseKatō Haruji (...
У этого термина существуют и другие значения, см. Миларепа (значения). Миларепа Шепа Дорджеརྗེ་བཙུན་མི་ལ་རས་པ Статуя Миларепы в монастыре Миларепа-гомпа в долине Хеламбу, Непал Община кагью Предшественник Марпа Преемник Гампопа Деятельность поэт, писатель,...
Bus manufacturer based in the United Kingdom This article is about the Scottish bus manufacturer. For the English football player, see Dennis Alexander. Not to be confused with Denis Alexander or Denis Alexander, 6th Earl of Caledon. Alexander DennisCompany typeSubsidiaryIndustryBus manufacturingPredecessorTransBus InternationalFounded2004; 20 years ago (2004)HeadquartersLarbert, ScotlandKey peoplePaul Davies, President & Managing Director[1]ProductsBusesRevenue...
Pour les articles homonymes, voir Peel. Arthur Peel Fonctions Président de la Chambre des communes du Royaume-Uni 26 février 1884 – 8 avril 1895(11 ans, 1 mois et 13 jours) Monarque Victoria Prédécesseur Henry Brand Successeur William Gully Député à la Chambre des communes 13 juillet 1865 – 23 mai 1895(29 ans, 10 mois et 10 jours) Circonscription Warwick (1865-1885)Warwick et Leamington (1885-1895) Biographie Date de naissance 3 août 1829 Date de dé...