Hyperbolic angle

The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1

In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrizes the unit hyperbola, which has hyperbolic functions as coordinates. In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation.

The hyperbola xy = 1 is rectangular with semi-major axis , analogous to the circular angle equaling the area of a circular sector in a circle with radius .

Hyperbolic angle is used as the independent variable for the hyperbolic functions sinh, cosh, and tanh, because these functions may be premised on hyperbolic analogies to the corresponding circular (trigonometric) functions by regarding a hyperbolic angle as defining a hyperbolic triangle. The parameter thus becomes one of the most useful in the calculus of real variables.

Definition

Consider the rectangular hyperbola , and (by convention) pay particular attention to the branch .

First define:

  • The hyperbolic angle in standard position is the angle at between the ray to and the ray to , where .
  • The magnitude of this angle is the area of the corresponding hyperbolic sector, which turns out to be .

Note that, because of the role played by the natural logarithm:

  • Unlike circular angle, the hyperbolic angle is unbounded (because is unbounded); this is related to the fact that the harmonic series is unbounded.
  • The formula for the magnitude of the angle suggests that, for , the hyperbolic angle should be negative. This reflects the fact that, as defined, the angle is directed.

Finally, extend the definition of hyperbolic angle to that subtended by any interval on the hyperbola. Suppose are positive real numbers such that and , so that and are points on the hyperbola and determine an interval on it. Then the squeeze mapping maps the angle to the standard position angle . By the result of Gregoire de Saint-Vincent, the hyperbolic sectors determined by these angles have the same area, which is taken to be the magnitude of the angle. This magnitude is .

Comparison with circular angle

The unit hyperbola has a sector with an area half of the hyperbolic angle
Circular vs. hyperbolic angle

A unit circle has a circular sector with an area half of the circular angle in radians. Analogously, a unit hyperbola has a hyperbolic sector with an area half of the hyperbolic angle.

There is also a projective resolution between circular and hyperbolic cases: both curves are conic sections, and hence are treated as projective ranges in projective geometry. Given an origin point on one of these ranges, other points correspond to angles. The idea of addition of angles, basic to science, corresponds to addition of points on one of these ranges as follows:

Circular angles can be characterized geometrically by the property that if two chords P0P1 and P0P2 subtend angles L1 and L2 at the centre of a circle, their sum L1 + L2 is the angle subtended by a chord P0Q, where P0Q is required to be parallel to P1P2.

The same construction can also be applied to the hyperbola. If P0 is taken to be the point (1, 1), P1 the point (x1, 1/x1), and P2 the point (x2, 1/x2), then the parallel condition requires that Q be the point (x1x2, 1/x11/x2). It thus makes sense to define the hyperbolic angle from P0 to an arbitrary point on the curve as a logarithmic function of the point's value of x.[1][2]

Whereas in Euclidean geometry moving steadily in an orthogonal direction to a ray from the origin traces out a circle, in a pseudo-Euclidean plane steadily moving orthogonally to a ray from the origin traces out a hyperbola. In Euclidean space, the multiple of a given angle traces equal distances around a circle while it traces exponential distances upon the hyperbolic line.[3]

Both circular and hyperbolic angle provide instances of an invariant measure. Arcs with an angular magnitude on a circle generate a measure on certain measurable sets on the circle whose magnitude does not vary as the circle turns or rotates. For the hyperbola the turning is by squeeze mapping, and the hyperbolic angle magnitudes stay the same when the plane is squeezed by a mapping

(x, y) ↦ (rx, y / r), with r > 0 .

Relation To The Minkowski Line Element

There is also a curious relation to a hyperbolic angle and the metric defined on Minkowski space. Just as two dimensional Euclidean geometry defines its line element as

the line element on Minkowski space is[4]

Consider a curve embedded in two dimensional Euclidean space,

Where the parameter is a real number that runs between and (). The arclength of this curve in Euclidean space is computed as:

If defines a unit circle, a single parameterized solution set to this equation is and . Letting , computing the arclength gives . Now doing the same procedure, except replacing the Euclidean element with the Minkowski line element,

and defining a unit hyperbola as with its corresponding parameterized solution set and , and by letting (the hyperbolic angle), we arrive at the result of . Just as the circular angle is the length of a circular arc using the Euclidean metric, the hyperbolic angle is the length of a hyperbolic arc using the Minkowski metric.

History

The quadrature of the hyperbola is the evaluation of the area of a hyperbolic sector. It can be shown to be equal to the corresponding area against an asymptote. The quadrature was first accomplished by Gregoire de Saint-Vincent in 1647 in Opus geometricum quadrature circuli et sectionum coni. As expressed by a historian,

[He made the] quadrature of a hyperbola to its asymptotes, and showed that as the area increased in arithmetic series the abscissas increased in geometric series.[5]

A. A. de Sarasa interpreted the quadrature as a logarithm and thus the geometrically defined natural logarithm (or "hyperbolic logarithm") is understood as the area under y = 1/x to the right of x = 1. As an example of a transcendental function, the logarithm is more familiar than its motivator, the hyperbolic angle. Nevertheless, the hyperbolic angle plays a role when the theorem of Saint-Vincent is advanced with squeeze mapping.

Circular trigonometry was extended to the hyperbola by Augustus De Morgan in his textbook Trigonometry and Double Algebra.[6] In 1878 W.K. Clifford used the hyperbolic angle to parametrize a unit hyperbola, describing it as "quasi-harmonic motion".

In 1894 Alexander Macfarlane circulated his essay "The Imaginary of Algebra", which used hyperbolic angles to generate hyperbolic versors, in his book Papers on Space Analysis.[7] The following year Bulletin of the American Mathematical Society published Mellen W. Haskell's outline of the hyperbolic functions.[8]

When Ludwik Silberstein penned his popular 1914 textbook on the new theory of relativity, he used the rapidity concept based on hyperbolic angle a, where tanh a = v/c, the ratio of velocity v to the speed of light. He wrote:

It seems worth mentioning that to unit rapidity corresponds a huge velocity, amounting to 3/4 of the velocity of light; more accurately we have v = (.7616)c for a = 1.
[...] the rapidity a = 1, [...] consequently will represent the velocity .76 c which is a little above the velocity of light in water.

Silberstein also uses Lobachevsky's concept of angle of parallelism Π(a) to obtain cos Π(a) = v/c.[9]

Imaginary circular angle

The hyperbolic angle is often presented as if it were an imaginary number, and so that the hyperbolic functions cosh and sinh can be presented through the circular functions. But in the Euclidean plane we might alternately consider circular angle measures to be imaginary and hyperbolic angle measures to be real scalars, and

These relationships can be understood in terms of the exponential function, which for a complex argument can be broken into even and odd parts and respectively. Then

or if the argument is separated into real and imaginary parts the exponential can be split into the product of scaling and rotation

As infinite series,

The infinite series for cosine is derived from cosh by turning it into an alternating series, and the series for sine comes from making sinh into an alternating series.

See also

Notes

  1. ^ Bjørn Felsager, Through the Looking Glass – A glimpse of Euclid's twin geometry, the Minkowski geometry Archived 2011-07-16 at the Wayback Machine, ICME-10 Copenhagen 2004; p.14. See also example sheets [1] Archived 2009-01-06 at the Wayback Machine [2] Archived 2008-11-21 at the Wayback Machine exploring Minkowskian parallels of some standard Euclidean results
  2. ^ Viktor Prasolov and Yuri Solovyev (1997) Elliptic Functions and Elliptic Integrals, page 1, Translations of Mathematical Monographs volume 170, American Mathematical Society
  3. ^ Hyperbolic Geometry pp 5–6, Fig 15.1
  4. ^ Weisstein, Eric W. "Minkowski Metric". mathworld.wolfram.com.
  5. ^ David Eugene Smith (1925) History of Mathematics, pp. 424,5 v. 1
  6. ^ Augustus De Morgan (1849) Trigonometry and Double Algebra, Chapter VI: "On the connection of common and hyperbolic trigonometry"
  7. ^ Alexander Macfarlane(1894) Papers on Space Analysis, B. Westerman, New York
  8. ^ Mellen W. Haskell (1895) On the introduction of the notion of hyperbolic functions Bulletin of the American Mathematical Society 1(6):155–9
  9. ^ Ludwik Silberstein (1914) The Theory of Relativity, pp. 180–1 via Internet Archive

References

Read other articles:

Joey KramerNama lahirJoseph Michael KramerLahir21 Juni 1950 (umur 73)AsalThe Bronx, New York City, Amerika SerikatGenreHard rockBlues-rockRockPekerjaanMusisiPenulis LaguInstrumenDrumsTahun aktif1970 — SekarangLabelColumbia RecordsGeffen RecordsArtis terkaitAerosmithSitus webJoeyKramer.com Joseph Michael Joey Kramer (lahir pada tanggal 21 Juni 1950 di The Bronx, New York City, Amerika Serikat) adalah drummer dari grup musik rock Aerosmith. Kramer adalah personel yang memberi nama band A...

 

Halo, RianParamartha. Selamat datang di Wikipedia bahasa Indonesia! Memulai Bacalah halaman Pengantar Wikipedia terlebih dahulu. Baca juga informasi tentang berkontribusi di Wikipedia. Lihat pula aturan yang disederhanakan sebelum melanjutkan. Tips Selalu tanda tangani pertanyaan Anda di Warung Kopi atau halaman pembicaraan dengan mengetikkan ~~~~ pada akhir kalimat Anda. Jangan takut! Anda tidak perlu takut salah ketika menyunting atau membuat halaman baru, menambahkan, atau menghapus kalim...

 

Gaya atau nada penulisan artikel ini tidak mengikuti gaya dan nada penulisan ensiklopedis yang diberlakukan di Wikipedia. Bantulah memperbaikinya berdasarkan panduan penulisan artikel. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Achmad Affandi Menteri Pertanian Indonesia ke-18Masa jabatan19 Maret 1983 – 21 Maret 1988PresidenSoeharto PendahuluSoedarsono HadisapoetroPenggantiWardojo[[Menteri Muda Urusan Peningkatan Produksi Pangan Indonesia]] ke-2Masa ...

Edimilson Fernandes Fernandes with West Ham United in 2016Informasi pribadiNama lengkap Edimilson Fernandes Ribeiro[1]Tanggal lahir 15 April 1996 (umur 27)Tempat lahir Sion, SwitzerlandTinggi 1,90 m (6 ft 3 in)Posisi bermain MidfielderInformasi klubKlub saat ini Mainz 05Nomor 20Karier junior2007–2013 SionKarier senior*Tahun Tim Tampil (Gol)2013–2016 Sion 48 (2)2016–2019 West Ham United 42 (0)2018–2019 → Fiorentina (loan) 29 (2)2019– Mainz 05 24 (1)Tim ...

 

Air Koryo고려항공高麗航空Koryŏ Hanggong IATA ICAO Kode panggil JS KOR AIR KORYO Didirikan21 September 1955PenghubungBandar Udara Internasional SunanAnak perusahaanAdministrasi Penerbangan Nasional Korea UtaraArmada20Tujuan4Kantor pusatPyongyang, Korea UtaraTokoh utamaAn Pyong-chil (Direktur Biro Umum Perhubungan Udara)Situs webwww.airkoryo.com.kp Air Koryo (Korea: 고려항공, Hanja: 高麗航空, Alih aksara: Koryŏ Hanggong) adalah sebuah maskapai penerbangan nasional milik pemeri...

 

See also: List of multiple Olympic medalists and Lists of Olympic medalists This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Potential WP:OR/WP:SYNTH, sloppy writing, and requires overall re-examination/cleanup. Please help improve this article if you can. (October 2023) (Learn how and when to remove this template message) Canadian Ian Millar in a 2007 picture. At London 2012 he participated in a record 10th Olympics Only a small fraction of th...

Main article: 2016 United States presidential election 2016 United States presidential election in Illinois ← 2012 November 8, 2016 2020 → Turnout68.95%   Nominee Hillary Clinton Donald Trump Party Democratic Republican Home state New York New York Running mate Tim Kaine Mike Pence Electoral vote 20 0 Popular vote 3,090,729 2,146,015 Percentage 55.83% 38.76% County results Congressional district results Precinct results Clinton   40–...

 

伊斯兰合作组织Organisation of Islamic Cooperation(英語)Organisation de la Coopération Islamique(法語)منظمة التعاون الإسلامي(阿拉伯語) 旗帜格言:To safeguard the interests and ensure the progress and well-being of Muslims  成员国  观察国  暂停会籍行政总部 沙地阿拉伯吉达 官方语言阿拉伯语英语法语类型宗教成员国57个在籍成员国(英语:Member states of the Organisation ...

 

Thomas Menino Wali Kota Boston 53Masa jabatan12 Juli 1993 – 6 Januari 2014PendahuluRaymond FlynnPenggantiMarty WalshPresiden Dewan Kota BostonMasa jabatan1993PendahuluDapper O'NeilPenggantiJames M. KellyKonselor Kota Bostonuntuk Distrik 5Masa jabatan1984–1993PendahuluDistrik DibentukPenggantiDaniel F. Conley Informasi pribadiLahirThomas Michael Menino(1942-12-27)27 Desember 1942Hyde Park, Boston, MassachusettsMeninggal30 Oktober 2014(2014-10-30) (umur 71)Boston, Massachu...

Ken ZhuKen Chu pada tahun 2007LahirZhū Xiàotiān / 朱孝天Pekerjaanaktor, penyanyiTahun aktif2000-sekarang Ken Zhu (朱孝天, pinyin: Zhū Xiàotiān) (lahir 15 Januari 1979) adalah aktor dan penyanyi asal Taiwan. Ia merupakan salah satu anggota F4. Ken tidak hanya dapat berbicara dalam bahasa Mandarin, tetapi juga dalam bahasa Inggris dan bahasa Kanton. Filmografi Film Tahun Judul Peran Produksi 2003 Sky of Love Wen Jia Hui 2006 The Tokyo Trial Xiao Nan 2007 Batanes: Sa Dulo Ng Wa...

 

American politician Frank ArtilesMember of the Florida Senatefrom the 40th districtIn officeNovember 8, 2016 – April 21, 2017Preceded byMiguel Díaz de la PortillaSucceeded byAnnette TaddeoMember of the Florida House of RepresentativesIn officeNovember 2, 2010 – November 8, 2016Preceded byJuan C. ZapataSucceeded byRobert AsencioConstituency119th district (2010–2012)118th district (2012–2016) Personal detailsBorn (1973-04-22) April 22, 1973 (age 51)Los Angeles, C...

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Corazón (canal de televisión)» – noticias · libros · académico · imágenesEste aviso fue puesto el 20 de noviembre de 2018. CorazónEslogan La vida que sueñasTipo de canal Televisión por suscripciónProgramación TelenovelasPropietario TV AztecaOperado por TV Azteca Internacional TV de PagaPaís México MéxicoFundación 2008Fundador Ricardo Salinas Plie...

Binary tree derived from a sequence of numbers A sequence of numbers and the Cartesian tree derived from them. For Descartes' metaphor of tree of knowledge, see Tree of knowledge (philosophy). In computer science, a Cartesian tree is a binary tree derived from a sequence of distinct numbers. To construct the Cartesian tree, set its root to be the minimum number in the sequence, and recursively construct its left and right subtrees from the subsequences before and after this number. It is uni...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2022) الهجمات الإيرانية على إقليم كردستان العراق البلد العراق  المكان  العراق،  كردستان العراق تاريخ البدء 6 سبتمبر 2022  تعديل مصدري - تعديل   الهجمات �...

 

Defunct greyhound racing and speedway stadium in London West Ham StadiumLocationLondonCoordinates51°30′52″N 0°02′06″E / 51.51444°N 0.03500°E / 51.51444; 0.03500Opened1928Closed1972 West Ham Stadium existed between 1928 and 1972 in Custom House,[1] east London, England, on Prince Regent Lane, near the present-day Prince Regent DLR station. The venue was used for greyhound racing and speedway on weekdays[2] and had no connection with West Ham ...

Book of history on the Maccabean Revolt Hebrew Bible (Judaism) Torah (Instruction)GenesisBereshitExodusShemotLeviticusWayiqraNumbersBemidbarDeuteronomyDevarim Nevi'im (Prophets) Former JoshuaYehoshuaJudgesShofetimSamuelShemuelKingsMelakhim Latter IsaiahYeshayahuJeremiahYirmeyahuEzekielYekhezqel Minor Hosea Joel Amos Obadiah Jonah Micah Nahum Habakkuk Zephaniah Haggai Zechariah Malachi Ketuvim (Writings) Poetic PsalmsTehillimProverbsMishleiJobIyov Five Megillot (Scrolls) Song of...

 

Parlement d'AngleterreHistoireFondation 1215Dissolution 1er mai 1707Successeur Parlement de Grande-BretagneCadreType Parlement, bicamérismeSiège Palais de WestminsterPays Royaume d'Angleterremodifier - modifier le code - modifier Wikidata Réunion du Parlement en présence du roi, début du XIVe siècle. L’image date peut-être du milieu des années 1320, le roi étant alors le jeune Édouard III ; elle pourrait aussi dater des dernières années du XIIIe siècle, le roi é...

 

Expressionism in Philosophy: Spinoza Cover of the first editionAuthorGilles DeleuzeOriginal titleSpinoza et le problème de l'expressionTranslatorMartin JoughinLanguageFrenchSubjectBaruch SpinozaPublisherEditions de Minuit, Zone BooksPublication date1968Publication placeFrancePublished in English1990Media typePrint (Hardcover and Paperback)Pages448 (Zone Books edition)Preceded byDifférence et répétition (1968) Followed byLogique du sens (1969)  Expression...

The ReverendSamuel MillerBorn(1769-10-31)October 31, 1769Dover, Delaware, British AmericaDiedJanuary 7, 1850(1850-01-07) (aged 80)Princeton, New Jersey, U.S.Spouse Sarah Sergeant ​(m. 1801)​Ecclesiastical careerReligionChristianity (Presbyterian)ChurchPresbyterian Church in the United States of AmericaOrdained1793Offices heldModerator of the General Assembly (1806) Academic backgroundAlma materUniversity of PennsylvaniaAcademic workDisciplineTheologyhistoryI...

 

Island in Russia Kosa Dvukh Pilotov‹See Tfd›Russian: коса Двух ПилотовLocation of long Kosa Dvukh Pilotov Island off Tynkurgin and Tynkergynpil'gyn lagoons.GeographyCoordinates68°25′34″N 177°57′58″E / 68.426°N 177.966°E / 68.426; 177.966Length52.5 km (32.62 mi)Width1 km (0.6 mi)AdministrationRussiaDemographicsPopulation0 Kosa Dvukh Pilotov Island (коса Двух Пилотов, Two Pilots' Sandspit) is a long and na...