"Hyperbolic curve" redirects here. For the geometric curve, see Hyperbola.
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.
In complex analysis, the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions. As a result, the other hyperbolic functions are meromorphic in the whole complex plane.
Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert.[13] Riccati used Sc. and Cc. (sinus/cosinus circulare) to refer to circular functions and Sh. and Ch. (sinus/cosinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names, but altered the abbreviations to those used today.[14] The abbreviations sh, ch, th, cth are also currently used, depending on personal preference.
Hyperbolic sine: the odd part of the exponential function, that is,
Hyperbolic cosine: the even part of the exponential function, that is,
Hyperbolic tangent:
Hyperbolic cotangent: for x ≠ 0,
Hyperbolic secant:
Hyperbolic cosecant: for x ≠ 0,
Differential equation definitions
The hyperbolic functions may be defined as solutions of differential equations: The hyperbolic sine and cosine are the solution (s, c) of the system
with the initial conditions The initial conditions make the solution unique; without them any pair of functions would be a solution.
sinh(x) and cosh(x) are also the unique solution of the equation f ″(x) = f (x),
such that f (0) = 1, f ′(0) = 0 for the hyperbolic cosine, and f (0) = 0, f ′(0) = 1 for the hyperbolic sine.
It can be shown that the area under the curve of the hyperbolic cosine (over a finite interval) is always equal to the arc length corresponding to that interval:[15]
The hyperbolic functions satisfy many identities, all of them similar in form to the trigonometric identities. In fact, Osborn's rule[18] states that one can convert any trigonometric identity (up to but not including sinhs or implied sinhs of 4th degree) for , , or and into a hyperbolic identity, by expanding it completely in terms of integral powers of sines and cosines, changing sine to sinh and cosine to cosh, and switching the sign of every term containing a product of two sinhs.
The following series are followed by a description of a subset of their domain of convergence, where the series is convergent and its sum equals the function.
Since the area of a circular sector with radius r and angle u (in radians) is r2u/2, it will be equal to u when r = √2. In the diagram, such a circle is tangent to the hyperbola xy = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red regions together depict a hyperbolic sector with area corresponding to hyperbolic angle magnitude.
The legs of the two right triangles with hypotenuse on the ray defining the angles are of length √2 times the circular and hyperbolic functions.
The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers.
The graph of the function a cosh(x/a) is the catenary, the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
Since the exponential function can be defined for any complex argument, we can also extend the definitions of the hyperbolic functions to complex arguments. The functions sinh z and cosh z are then holomorphic.
Relationships to ordinary trigonometric functions are given by Euler's formula for complex numbers:
so:
Thus, hyperbolic functions are periodic with respect to the imaginary component, with period ( for hyperbolic tangent and cotangent).
^Robert E. Bradley, Lawrence A. D'Antonio, Charles Edward Sandifer. Euler at 300: an appreciation. Mathematical Association of America, 2007. Page 100.
^Georg F. Becker. Hyperbolic functions. Read Books, 1931. Page xlviii.
^Martin, George E. (1986). The foundations of geometry and the non-euclidean plane (1st corr. ed.). New York: Springer-Verlag. p. 416. ISBN3-540-90694-0.
Koordinat: 35°50′11″N 129°13′18.4″E / 35.83639°N 129.221778°E / 35.83639; 129.221778 CheomseongdaeNama KoreaHangul첨성대 Hanja瞻星臺 Alih AksaraCheomseongdaeMcCune–ReischauerCh'ŏmsŏngdae Cheomseongdae adalah sebuah observatori astronomi kuno yang terdapat di Gyeongju, Korea Selatan. Cheomseongdae berarti menara pengamat bintang dalam bahasa Korea. Cheomseongdae adalah salah satu dari observatori tertua yang masih tersisa di Asia Timur dan di dunia...
Wakil Bupati Lombok UtaraPetahanaDanny Karter Febrianto Ridawan, S.T., M.Eng.sejak 26 Februari 2021Masa jabatan5 tahunDibentuk2 Agustus 2010Pejabat pertamaDr. H. Najmul Akhyar, S.H., M.H.Situs weblombokutarakab.go.id Berikut ini adalah daftar Wakil Bupati Lombok Utara dari masa ke masa. No Wakil Bupati Mulai Jabatan Akhir Jabatan Prd. Ket. Bupati 1 Dr. H.Najmul AkhyarS.H., M.H. 2 Agustus 2010 2 Agustus 2015 1 H.Djohan SjamsuS.H. Jabatan kosong 3 Agustus 2015 16 Februari 2016 - ...
NGC 253 atau Galaksi Sculptor (bahasa Indonesia: Pemahat) adalah anggota paling terang dari kelompok sculptor, dikelompokkan di sekitar kutub galaksi Selatan (oleh karena itu, kadang-kadang juga disebut Grup Kutub Selatan). NGC 253 adalah salah satu galaksi spiral paling terang di langit dan diluar Grup Lokal, dan juga salah satu galaksi paling berdebu. Terletak di konstelasi Scuptor selatan pada jarak sekitar 8 juta tahun cahaya. Sekitar 70 ribu tahun cahaya, NGC 253 adalah anggota terbesar...
Layout of a motorised vehicle The powertrain layout of a motorised vehicle such as a car is often defined by the location of the engine or motors and the drive wheels. Layouts can roughly be divided into three categories: front-wheel drive (FWD), rear-wheel drive (RWD) and four-wheel drive (4WD). Many different combinations of engine location and driven wheels are found in practice, and the location of each is dependent on the application for which the vehicle will be used. Front-wheel-drive ...
1923-1945 American comic strip This article is about the American comic strip by Percy Crosby. For the US radio series based on this comic, see Skippy (radio). SkippyThe debut Skippy comic strip, published in Life on March 22, 1923Author(s)Percy CrosbyCurrent status/scheduleConcluded daily & Sunday stripLaunch date1923 (1925 in syndication)End dateDecember 2, 1945[1]Syndicate(s)King Features SyndicatePublisher(s)Eastern Color PrintingIDW PublishingGenre(s)humor, children Percy Cro...
Menara Kembar PetronasLocation within Kuala LumpurRekor tinggiTertinggi di dunia sejak 1998 hingga 2004[I]DidahuluiWillis Tower (Menara Willis)DigantikanTaipei 101Informasi umumJenisPerkantoran dan tempat wisataLokasiKuala Lumpur MalaysiaPeletakan batu pertama1 Januari 1992Mulai dibangun1 Maret 1993Rampung1 April 1994Diresmikan31 Agustus 1999Tanggal renovasi1 Januari 1997BiayaUS$1,6 miliar [1]PemilikKLCC Holdings Sdn BhdTinggiArsitektural451,9 m (1.483 ft) [2]A...
Suku dan bangsa di semenanjung Italia pada abad ke-9 hingga ke-4 SM. Selanjutnya, invasi Galia dan aktivitas pertahanan Republik Romawi membuat perubahan besar di peta. Liguria Venetia Etruria Pikenum Umbria Latin Samnit Messapia Yunani Perkiraan penyebaran bahasa-bahasa di Zaman Besi Semenanjung Italia dan sekitarnya selama abad keenam SM. Umbria adalah salah satu suku Italik yang pern...
Questa voce sull'argomento stagioni delle società calcistiche è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Athlītikī Enōsī Kition. Athlītikī Enōsī KitionStagione 2022-2023Sport calcio Squadra AEK Larnaca A' Katīgoria3º posto nella stagione regolare, 2º posto nella Poule Scudetto Coppa di CiproSemifinali StadioAEK Arena - Georgios Karapatakis (8 000) 2021-2022 2...
Manuel Marras Marras con la maglia del Cosenza nel 2023 Nazionalità Italia Altezza 168 cm Peso 63 kg Calcio Ruolo Ala, attaccante Squadra Cosenza Carriera Giovanili Savona2000-2008 Genoa2008-2012 Spezia Squadre di club1 2011-2012 Spezia2 (0)2012-2013→ Rimini24 (3)2013-2014→ Savona24 (1)2014-2015→ Südtirol34 (5)2015-2017 Alessandria66 (7)2017-2018 Trapani35 (3)2018-2019 Pescara33 (0)2019-2020 Livorno34 (8)2020-2022...
Servascomune (dettagli) Servas – Veduta LocalizzazioneStato Francia RegioneAlvernia-Rodano-Alpi Dipartimento Ain ArrondissementBourg-en-Bresse CantoneCeyzériat TerritorioCoordinate46°08′N 5°10′E46°08′N, 5°10′E (Servas) Superficie13,12 km² Abitanti1 203[1] (2009) Densità91,69 ab./km² Altre informazioniCod. postale1240 Fuso orarioUTC+1 Codice INSEE01405 CartografiaServas Sito istituzionaleModifica dati su Wikidata · Manuale Servas è un comun...
Hereditary queen of Balobedu This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rain Queen – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this message) ModjadjiCountrySouth AfricaFounded1800FounderMaselekwane Modjadji ICurrent headMasalanabo Modjadji VIITitlesRain Q...
City in Indiana, United StatesHammond, IndianaCityDowntown Hammond FlagLocation of Hammond in Lake County, Indiana.Coordinates: 41°37′40″N 87°29′35″W / 41.62778°N 87.49306°W / 41.62778; -87.49306CountryUnited StatesStateIndianaCountyLakeTownshipNorthSettled1847Incorporated (town)December 4, 1883[1]Incorporated (city)April 21, 1907[1]Named forGeorge H. HammondGovernment[2] • TypeMayor–council • MayorThomas M...
Australian federal electoral division Australian electorate BanksAustralian House of Representatives DivisionDivision of Banks in New South Wales, as of the 2019 federal electionCreated1949MPDavid ColemanPartyLiberalNamesakeSir Joseph BanksElectors107,786 (2022)Area53 km2 (20.5 sq mi)DemographicInner metropolitan The Division of Banks is an Australian electoral division in the state of New South Wales. History Sir Joseph Banks, the division's namesake The division was crea...
Sebuah tipi Oglala Lakota, 1891. Interior tipi Suku Crow tahun 1907, menunjukkan tiang dan kulit luar di bagian atas, lapisan dalam dan seprai. Tali pengikat diikat pada tiang kayu di bagian bawah foto. Pakaian digantung pada tali yang diikat di antara dua ujung tiang. Tipi (atau ditulis juga teepee atau tepee[1]) adalah sebuah tenda, yang secara tradisional terbuat dari kulit binatang yang di pasang pada tiang-tiang kayu. Tipi modern biasanya memiliki penutup dari kanvas.[2] ...
Maritime museum in England The Classic Boat Museum The Classic Boat Museum is a museum of boats and of the history of yachting and boating. It is located on the Isle of Wight at two separate sites on either side of the River Medina; The Boat Collection in Cowes, and The Gallery in East Cowes. It is a working museum featuring restoration. Work takes place all year round. In addition to classic boats, the museum contains tools, artefacts, books, photographs, film and archival items that relate ...
خط سرياني شرقيمعلومات عامةصنف فرعي من أبجدية سريانية البداية 1 الاسم Syriac (Eastern variant) (بالإنجليزية) [1]syriaque (variante orientale) (بالفرنسية) [1] الاسم الأصل ܡܲܕ݂ܢܚܵܝܵܐ (بالسريانية) سُمِّي باسم سوريا اشتق من أبجدية أرامية لغة العمل أو لغة الاسم الآراميةالسريانيةآرامية غربية حديث�...
Metro-North Railroad station in New York FleetwoodFleetwood stationGeneral informationLocation1 North MacQuesten Parkway, Mount Vernon, New YorkCoordinates40°55′37″N 73°50′24″W / 40.9270°N 73.8400°W / 40.9270; -73.8400Line(s)Harlem LinePlatforms1 island platform1 side platformTracks3ConnectionsBee-Line Bus System: 26, 55ConstructionParking654 spacesAccessibleYesOther informationFare zone3HistoryOpenedOctober 25, 1924[1]Rebuilt1989Electrified700V (DC...
Division of Congregationalism (1732–1880) Part of a series onReformed ChristianityReformation Wall in Geneva, featuring prominent Reformed theologians William Farel, John Calvin, Theodore Beza, and John Knox Background Christianity Reformation Protestantism Theology Theology of John Calvin Covenant theology Republication of the Covenant of Works Baptist Covenant Theology Logical order of God's decrees Baptism Lord's Supper Regulative principle Predestination Scholasticism TextsList of texts...
Mark Carwardine (2012) BiografiKelahiran9 Maret 1959 (65 tahun) KegiatanPekerjaanzoologis, conservationist (en) , penulis, fotografer Mark Carwardine (lahir 9 Maret 1959) adalah pakar zoologi, yang pernah bergabung dengan World Wildlife Fund, dan menjadi penulis lepas, fotografer, dan pakar zoologi sejak tahun 1986. Dia juga berkolaborasi menulis buku Last Chance to See dengan Douglas Adams. Pada 10 Maret 2005, dia berceramah dalam Cermah Memorial Douglas Adams tahunan yang ketiga...