Hyperbolic functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity.

The basic hyperbolic functions are:[1]

from which are derived:[4]

corresponding to the derived trigonometric functions.

The inverse hyperbolic functions are:

  • area hyperbolic sine "arsinh" (also denoted "sinh−1", "asinh" or sometimes "arcsinh")[9][10][11]
  • area hyperbolic cosine "arcosh" (also denoted "cosh−1", "acosh" or sometimes "arccosh")
  • area hyperbolic tangent "artanh" (also denoted "tanh−1", "atanh" or sometimes "arctanh")
  • area hyperbolic cotangent "arcoth" (also denoted "coth−1", "acoth" or sometimes "arccoth")
  • area hyperbolic secant "arsech" (also denoted "sech−1", "asech" or sometimes "arcsech")
  • area hyperbolic cosecant "arcsch" (also denoted "arcosech", "csch−1", "cosech−1","acsch", "acosech", or sometimes "arccsch" or "arccosech")
A ray through the unit hyperbola x2y2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).

The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is twice the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.

In complex analysis, the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions. As a result, the other hyperbolic functions are meromorphic in the whole complex plane.

By Lindemann–Weierstrass theorem, the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument.[12]

Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert.[13] Riccati used Sc. and Cc. (sinus/cosinus circulare) to refer to circular functions and Sh. and Ch. (sinus/cosinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names, but altered the abbreviations to those used today.[14] The abbreviations sh, ch, th, cth are also currently used, depending on personal preference.

Notation

Definitions

sinh, cosh and tanh
csch, sech and coth

There are various equivalent ways to define the hyperbolic functions.

Exponential definitions

sinh x is half the difference of ex and ex
cosh x is the average of ex and ex

In terms of the exponential function:[1][4]

  • Hyperbolic sine: the odd part of the exponential function, that is,
  • Hyperbolic cosine: the even part of the exponential function, that is,
  • Hyperbolic tangent:
  • Hyperbolic cotangent: for x ≠ 0,
  • Hyperbolic secant:
  • Hyperbolic cosecant: for x ≠ 0,

Differential equation definitions

The hyperbolic functions may be defined as solutions of differential equations: The hyperbolic sine and cosine are the solution (s, c) of the system with the initial conditions The initial conditions make the solution unique; without them any pair of functions would be a solution.

sinh(x) and cosh(x) are also the unique solution of the equation f ″(x) = f (x), such that f (0) = 1, f ′(0) = 0 for the hyperbolic cosine, and f (0) = 0, f ′(0) = 1 for the hyperbolic sine.

Complex trigonometric definitions

Hyperbolic functions may also be deduced from trigonometric functions with complex arguments:

  • Hyperbolic sine:[1]
  • Hyperbolic cosine:[1]
  • Hyperbolic tangent:
  • Hyperbolic cotangent:
  • Hyperbolic secant:
  • Hyperbolic cosecant:

where i is the imaginary unit with i2 = −1.

The above definitions are related to the exponential definitions via Euler's formula (See § Hyperbolic functions for complex numbers below).

Characterizing properties

Hyperbolic cosine

It can be shown that the area under the curve of the hyperbolic cosine (over a finite interval) is always equal to the arc length corresponding to that interval:[15]

Hyperbolic tangent

The hyperbolic tangent is the (unique) solution to the differential equation f ′ = 1 − f2, with f (0) = 0.[16][17]

Useful relations

The hyperbolic functions satisfy many identities, all of them similar in form to the trigonometric identities. In fact, Osborn's rule[18] states that one can convert any trigonometric identity (up to but not including sinhs or implied sinhs of 4th degree) for , , or and into a hyperbolic identity, by expanding it completely in terms of integral powers of sines and cosines, changing sine to sinh and cosine to cosh, and switching the sign of every term containing a product of two sinhs.

Odd and even functions:

Hence:

Thus, cosh x and sech x are even functions; the others are odd functions.

Hyperbolic sine and cosine satisfy:

the last of which is similar to the Pythagorean trigonometric identity.

One also has

for the other functions.

Sums of arguments

particularly

Also:

Subtraction formulas

Also:[19]

Half argument formulas

where sgn is the sign function.

If x ≠ 0, then[20]

Square formulas

Inequalities

The following inequality is useful in statistics:[21]

It can be proved by comparing the Taylor series of the two functions term by term.

Inverse functions as logarithms

Derivatives

Second derivatives

Each of the functions sinh and cosh is equal to its second derivative, that is:

All functions with this property are linear combinations of sinh and cosh, in particular the exponential functions and .[22]

Standard integrals

The following integrals can be proved using hyperbolic substitution:

where C is the constant of integration.

Taylor series expressions

It is possible to express explicitly the Taylor series at zero (or the Laurent series, if the function is not defined at zero) of the above functions.

This series is convergent for every complex value of x. Since the function sinh x is odd, only odd exponents for x occur in its Taylor series.

This series is convergent for every complex value of x. Since the function cosh x is even, only even exponents for x occur in its Taylor series.

The sum of the sinh and cosh series is the infinite series expression of the exponential function.

The following series are followed by a description of a subset of their domain of convergence, where the series is convergent and its sum equals the function.

where:

Infinite products and continued fractions

The following expansions are valid in the whole complex plane:

Comparison with circular functions

Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of circular sector area u and hyperbolic functions depending on hyperbolic sector area u.

The hyperbolic functions represent an expansion of trigonometry beyond the circular functions. Both types depend on an argument, either circular angle or hyperbolic angle.

Since the area of a circular sector with radius r and angle u (in radians) is r2u/2, it will be equal to u when r = 2. In the diagram, such a circle is tangent to the hyperbola xy = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red regions together depict a hyperbolic sector with area corresponding to hyperbolic angle magnitude.

The legs of the two right triangles with hypotenuse on the ray defining the angles are of length 2 times the circular and hyperbolic functions.

The hyperbolic angle is an invariant measure with respect to the squeeze mapping, just as the circular angle is invariant under rotation.[23]

The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers.

The graph of the function a cosh(x/a) is the catenary, the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.

Relationship to the exponential function

The decomposition of the exponential function in its even and odd parts gives the identities and Combined with Euler's formula this gives for the general complex exponential function.

Additionally,

Hyperbolic functions for complex numbers

Hyperbolic functions in the complex plane

Since the exponential function can be defined for any complex argument, we can also extend the definitions of the hyperbolic functions to complex arguments. The functions sinh z and cosh z are then holomorphic.

Relationships to ordinary trigonometric functions are given by Euler's formula for complex numbers: so:

Thus, hyperbolic functions are periodic with respect to the imaginary component, with period ( for hyperbolic tangent and cotangent).

See also

References

  1. ^ a b c d Weisstein, Eric W. "Hyperbolic Functions". mathworld.wolfram.com. Retrieved 2020-08-29.
  2. ^ (1999) Collins Concise Dictionary, 4th edition, HarperCollins, Glasgow, ISBN 0 00 472257 4, p. 1386
  3. ^ a b Collins Concise Dictionary, p. 328
  4. ^ a b "Hyperbolic Functions". www.mathsisfun.com. Retrieved 2020-08-29.
  5. ^ Collins Concise Dictionary, p. 1520
  6. ^ Collins Concise Dictionary, p. 329
  7. ^ tanh
  8. ^ Collins Concise Dictionary, p. 1340
  9. ^ Woodhouse, N. M. J. (2003), Special Relativity, London: Springer, p. 71, ISBN 978-1-85233-426-0
  10. ^ Abramowitz, Milton; Stegun, Irene A., eds. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications, ISBN 978-0-486-61272-0
  11. ^ Some examples of using arcsinh found in Google Books.
  12. ^ Niven, Ivan (1985). Irrational Numbers. Vol. 11. Mathematical Association of America. ISBN 9780883850381. JSTOR 10.4169/j.ctt5hh8zn.
  13. ^ Robert E. Bradley, Lawrence A. D'Antonio, Charles Edward Sandifer. Euler at 300: an appreciation. Mathematical Association of America, 2007. Page 100.
  14. ^ Georg F. Becker. Hyperbolic functions. Read Books, 1931. Page xlviii.
  15. ^ N.P., Bali (2005). Golden Integral Calculus. Firewall Media. p. 472. ISBN 81-7008-169-6.
  16. ^ Willi-hans Steeb (2005). Nonlinear Workbook, The: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C++, Java And Symbolicc++ Programs (3rd ed.). World Scientific Publishing Company. p. 281. ISBN 978-981-310-648-2. Extract of page 281 (using lambda=1)
  17. ^ Keith B. Oldham; Jan Myland; Jerome Spanier (2010). An Atlas of Functions: with Equator, the Atlas Function Calculator (2nd, illustrated ed.). Springer Science & Business Media. p. 290. ISBN 978-0-387-48807-3. Extract of page 290
  18. ^ Osborn, G. (July 1902). "Mnemonic for hyperbolic formulae". The Mathematical Gazette. 2 (34): 189. doi:10.2307/3602492. JSTOR 3602492. S2CID 125866575.
  19. ^ Martin, George E. (1986). The foundations of geometry and the non-euclidean plane (1st corr. ed.). New York: Springer-Verlag. p. 416. ISBN 3-540-90694-0.
  20. ^ "Prove the identity tanh(x/2) = (cosh(x) - 1)/sinh(x)". StackExchange (mathematics). Retrieved 24 January 2016.
  21. ^ Audibert, Jean-Yves (2009). "Fast learning rates in statistical inference through aggregation". The Annals of Statistics. p. 1627. [1]
  22. ^ Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Hyperbolic functions", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  23. ^ Mellen W. Haskell, "On the introduction of the notion of hyperbolic functions", Bulletin of the American Mathematical Society 1:6:155–9, full text

Read other articles:

Koordinat: 35°50′11″N 129°13′18.4″E / 35.83639°N 129.221778°E / 35.83639; 129.221778 CheomseongdaeNama KoreaHangul첨성대 Hanja瞻星臺 Alih AksaraCheomseongdaeMcCune–ReischauerCh'ŏmsŏngdae Cheomseongdae adalah sebuah observatori astronomi kuno yang terdapat di Gyeongju, Korea Selatan. Cheomseongdae berarti menara pengamat bintang dalam bahasa Korea. Cheomseongdae adalah salah satu dari observatori tertua yang masih tersisa di Asia Timur dan di dunia...

 

Wakil Bupati Lombok UtaraPetahanaDanny Karter Febrianto Ridawan, S.T., M.Eng.sejak 26 Februari 2021Masa jabatan5 tahunDibentuk2 Agustus 2010Pejabat pertamaDr. H. Najmul Akhyar, S.H., M.H.Situs weblombokutarakab.go.id Berikut ini adalah daftar Wakil Bupati Lombok Utara dari masa ke masa. No Wakil Bupati Mulai Jabatan Akhir Jabatan Prd. Ket. Bupati 1 Dr. H.Najmul AkhyarS.H., M.H. 2 Agustus 2010 2 Agustus 2015 1   H.Djohan SjamsuS.H. Jabatan kosong 3 Agustus 2015 16 Februari 2016 - ...

 

NGC 253 atau Galaksi Sculptor (bahasa Indonesia: Pemahat) adalah anggota paling terang dari kelompok sculptor, dikelompokkan di sekitar kutub galaksi Selatan (oleh karena itu, kadang-kadang juga disebut Grup Kutub Selatan). NGC 253 adalah salah satu galaksi spiral paling terang di langit dan diluar Grup Lokal, dan juga salah satu galaksi paling berdebu. Terletak di konstelasi Scuptor selatan pada jarak sekitar 8 juta tahun cahaya. Sekitar 70 ribu tahun cahaya, NGC 253 adalah anggota terbesar...

Layout of a motorised vehicle The powertrain layout of a motorised vehicle such as a car is often defined by the location of the engine or motors and the drive wheels. Layouts can roughly be divided into three categories: front-wheel drive (FWD), rear-wheel drive (RWD) and four-wheel drive (4WD). Many different combinations of engine location and driven wheels are found in practice, and the location of each is dependent on the application for which the vehicle will be used. Front-wheel-drive ...

 

1923-1945 American comic strip This article is about the American comic strip by Percy Crosby. For the US radio series based on this comic, see Skippy (radio). SkippyThe debut Skippy comic strip, published in Life on March 22, 1923Author(s)Percy CrosbyCurrent status/scheduleConcluded daily & Sunday stripLaunch date1923 (1925 in syndication)End dateDecember 2, 1945[1]Syndicate(s)King Features SyndicatePublisher(s)Eastern Color PrintingIDW PublishingGenre(s)humor, children Percy Cro...

 

Menara Kembar PetronasLocation within Kuala LumpurRekor tinggiTertinggi di dunia sejak 1998 hingga 2004[I]DidahuluiWillis Tower (Menara Willis)DigantikanTaipei 101Informasi umumJenisPerkantoran dan tempat wisataLokasiKuala Lumpur  MalaysiaPeletakan batu pertama1 Januari 1992Mulai dibangun1 Maret 1993Rampung1 April 1994Diresmikan31 Agustus 1999Tanggal renovasi1 Januari 1997BiayaUS$1,6 miliar [1]PemilikKLCC Holdings Sdn BhdTinggiArsitektural451,9 m (1.483 ft) [2]A...

Suku dan bangsa di semenanjung Italia pada abad ke-9 hingga ke-4 SM. Selanjutnya, invasi Galia dan aktivitas pertahanan Republik Romawi membuat perubahan besar di peta.   Liguria   Venetia   Etruria   Pikenum   Umbria   Latin   Samnit   Messapia   Yunani Perkiraan penyebaran bahasa-bahasa di Zaman Besi Semenanjung Italia dan sekitarnya selama abad keenam SM. Umbria adalah salah satu suku Italik yang pern...

 

Questa voce sull'argomento stagioni delle società calcistiche è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Athlītikī Enōsī Kition. Athlītikī Enōsī KitionStagione 2022-2023Sport calcio Squadra AEK Larnaca A' Katīgoria3º posto nella stagione regolare, 2º posto nella Poule Scudetto Coppa di CiproSemifinali StadioAEK Arena - Georgios Karapatakis (8 000) 2021-2022 2...

 

Manuel Marras Marras con la maglia del Cosenza nel 2023 Nazionalità  Italia Altezza 168 cm Peso 63 kg Calcio Ruolo Ala, attaccante Squadra  Cosenza Carriera Giovanili  Savona2000-2008 Genoa2008-2012 Spezia Squadre di club1 2011-2012 Spezia2 (0)2012-2013→  Rimini24 (3)2013-2014→  Savona24 (1)2014-2015→  Südtirol34 (5)2015-2017 Alessandria66 (7)2017-2018 Trapani35 (3)2018-2019 Pescara33 (0)2019-2020 Livorno34 (8)2020-2022...

Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное наз...

 

Servascomune (dettagli) Servas – Veduta LocalizzazioneStato Francia RegioneAlvernia-Rodano-Alpi Dipartimento Ain ArrondissementBourg-en-Bresse CantoneCeyzériat TerritorioCoordinate46°08′N 5°10′E46°08′N, 5°10′E (Servas) Superficie13,12 km² Abitanti1 203[1] (2009) Densità91,69 ab./km² Altre informazioniCod. postale1240 Fuso orarioUTC+1 Codice INSEE01405 CartografiaServas Sito istituzionaleModifica dati su Wikidata · Manuale Servas è un comun...

 

Hereditary queen of Balobedu This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rain Queen – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this message) ModjadjiCountrySouth AfricaFounded1800FounderMaselekwane Modjadji ICurrent headMasalanabo Modjadji VIITitlesRain Q...

City in Indiana, United StatesHammond, IndianaCityDowntown Hammond FlagLocation of Hammond in Lake County, Indiana.Coordinates: 41°37′40″N 87°29′35″W / 41.62778°N 87.49306°W / 41.62778; -87.49306CountryUnited StatesStateIndianaCountyLakeTownshipNorthSettled1847Incorporated (town)December 4, 1883[1]Incorporated (city)April 21, 1907[1]Named forGeorge H. HammondGovernment[2] • TypeMayor–council • MayorThomas M...

 

Australian federal electoral division Australian electorate BanksAustralian House of Representatives DivisionDivision of Banks in New South Wales, as of the 2019 federal electionCreated1949MPDavid ColemanPartyLiberalNamesakeSir Joseph BanksElectors107,786 (2022)Area53 km2 (20.5 sq mi)DemographicInner metropolitan The Division of Banks is an Australian electoral division in the state of New South Wales. History Sir Joseph Banks, the division's namesake The division was crea...

 

Sebuah tipi Oglala Lakota, 1891. Interior tipi Suku Crow tahun 1907, menunjukkan tiang dan kulit luar di bagian atas, lapisan dalam dan seprai. Tali pengikat diikat pada tiang kayu di bagian bawah foto. Pakaian digantung pada tali yang diikat di antara dua ujung tiang. Tipi (atau ditulis juga teepee atau tepee[1]) adalah sebuah tenda, yang secara tradisional terbuat dari kulit binatang yang di pasang pada tiang-tiang kayu. Tipi modern biasanya memiliki penutup dari kanvas.[2] ...

Maritime museum in England The Classic Boat Museum The Classic Boat Museum is a museum of boats and of the history of yachting and boating. It is located on the Isle of Wight at two separate sites on either side of the River Medina; The Boat Collection in Cowes, and The Gallery in East Cowes. It is a working museum featuring restoration. Work takes place all year round. In addition to classic boats, the museum contains tools, artefacts, books, photographs, film and archival items that relate ...

 

خط سرياني شرقيمعلومات عامةصنف فرعي من أبجدية سريانية البداية 1 الاسم Syriac (Eastern variant) (بالإنجليزية) [1]syriaque (variante orientale) (بالفرنسية) [1] الاسم الأصل ܡܲܕ݂ܢܚܵܝܵܐ (بالسريانية) سُمِّي باسم سوريا اشتق من أبجدية أرامية لغة العمل أو لغة الاسم الآراميةالسريانيةآرامية غربية حديث�...

 

Metro-North Railroad station in New York FleetwoodFleetwood stationGeneral informationLocation1 North MacQuesten Parkway, Mount Vernon, New YorkCoordinates40°55′37″N 73°50′24″W / 40.9270°N 73.8400°W / 40.9270; -73.8400Line(s)Harlem LinePlatforms1 island platform1 side platformTracks3ConnectionsBee-Line Bus System: 26, 55ConstructionParking654 spacesAccessibleYesOther informationFare zone3HistoryOpenedOctober 25, 1924[1]Rebuilt1989Electrified700V (DC...

Division of Congregationalism (1732–1880) Part of a series onReformed ChristianityReformation Wall in Geneva, featuring prominent Reformed theologians William Farel, John Calvin, Theodore Beza, and John Knox Background Christianity Reformation Protestantism Theology Theology of John Calvin Covenant theology Republication of the Covenant of Works Baptist Covenant Theology Logical order of God's decrees Baptism Lord's Supper Regulative principle Predestination Scholasticism TextsList of texts...

 

Mark Carwardine (2012) BiografiKelahiran9 Maret 1959 (65 tahun) KegiatanPekerjaanzoologis, conservationist (en) , penulis, fotografer Mark Carwardine (lahir 9 Maret 1959) adalah pakar zoologi, yang pernah bergabung dengan World Wildlife Fund, dan menjadi penulis lepas, fotografer, dan pakar zoologi sejak tahun 1986. Dia juga berkolaborasi menulis buku Last Chance to See dengan Douglas Adams. Pada 10 Maret 2005, dia berceramah dalam Cermah Memorial Douglas Adams tahunan yang ketiga...