Share to: share facebook share twitter share wa share telegram print page

Algebraic number

The square root of 2 is an algebraic number equal to the length of the hypotenuse of a right triangle with legs of length 1.

An algebraic number is a number that is a root of a non-zero polynomial (of finite degree) in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x2x − 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number is algebraic because it is a root of x4 + 4.

All integers and rational numbers are algebraic, as are all roots of integers. Real and complex numbers that are not algebraic, such as π and e, are called transcendental numbers.

The set of algebraic numbers is countably infinite and has measure zero in the Lebesgue measure as a subset of the uncountable complex numbers. In that sense, almost all complex numbers are transcendental.

Examples

  • All rational numbers are algebraic. Any rational number, expressed as the quotient of an integer a and a (non-zero) natural number b, satisfies the above definition, because x = a/b is the root of a non-zero polynomial, namely bxa.[1]
  • Quadratic irrational numbers, irrational solutions of a quadratic polynomial ax2 + bx + c with integer coefficients a, b, and c, are algebraic numbers. If the quadratic polynomial is monic (a = 1), the roots are further qualified as quadratic integers.
    • Gaussian integers, complex numbers a + bi for which both a and b are integers, are also quadratic integers. This is because a + bi and abi are the two roots of the quadratic x2 − 2ax + a2 + b2.
  • A constructible number can be constructed from a given unit length using a straightedge and compass. It includes all quadratic irrational roots, all rational numbers, and all numbers that can be formed from these using the basic arithmetic operations and the extraction of square roots. (By designating cardinal directions for +1, −1, +i, and −i, complex numbers such as are considered constructible.)
  • Any expression formed from algebraic numbers using any combination of the basic arithmetic operations and extraction of nth roots gives another algebraic number.
  • Polynomial roots that cannot be expressed in terms of the basic arithmetic operations and extraction of nth roots (such as the roots of x5x + 1). That happens with many but not all polynomials of degree 5 or higher.
  • Values of trigonometric functions of rational multiples of π (except when undefined): for example, cos π/7, cos 3π/7, and cos 5π/7 satisfy 8x3 − 4x2 − 4x + 1 = 0. This polynomial is irreducible over the rationals and so the three cosines are conjugate algebraic numbers. Likewise, tan 3π/16, tan 7π/16, tan 11π/16, and tan 15π/16 satisfy the irreducible polynomial x4 − 4x3 − 6x2 + 4x + 1 = 0, and so are conjugate algebraic integers. This is the equivalent of angles which, when measured in degrees, have rational numbers.[2]
  • Some but not all irrational numbers are algebraic:
    • The numbers and are algebraic since they are roots of polynomials x2 − 2 and 8x3 − 3, respectively.
    • The golden ratio φ is algebraic since it is a root of the polynomial x2x − 1.
    • The numbers π and e are not algebraic numbers (see the Lindemann–Weierstrass theorem).[3]

Properties

Algebraic numbers on the complex plane colored by degree (bright orange/red = 1, green = 2, blue = 3, yellow = 4)[further explanation needed]
  • If a polynomial with rational coefficients is multiplied through by the least common denominator, the resulting polynomial with integer coefficients has the same roots. This shows that an algebraic number can be equivalently defined as a root of a polynomial with either integer or rational coefficients.
  • Given an algebraic number, there is a unique monic polynomial with rational coefficients of least degree that has the number as a root. This polynomial is called its minimal polynomial. If its minimal polynomial has degree n, then the algebraic number is said to be of degree n. For example, all rational numbers have degree 1, and an algebraic number of degree 2 is a quadratic irrational.
  • The algebraic numbers are dense in the reals. This follows from the fact they contain the rational numbers, which are dense in the reals themselves.
  • The set of algebraic numbers is countable (enumerable),[4][5] and therefore its Lebesgue measure as a subset of the complex numbers is 0 (essentially, the algebraic numbers take up no space in the complex numbers). That is to say, "almost all" real and complex numbers are transcendental.
  • All algebraic numbers are computable and therefore definable and arithmetical.
  • For real numbers a and b, the complex number a + bi is algebraic if and only if both a and b are algebraic.[6]

Degree of simple extensions of the rationals as a criterion to algebraicity

For any α, the simple extension of the rationals by α, denoted by , is of finite degree if and only if α is an algebraic number.

The condition of finite degree means that there is a finite set in such that ; that is, every member in can be written as for some rational numbers (note that the set is fixed).

Indeed, since the are themselves members of , each can be expressed as sums of products of rational numbers and powers of α, and therefore this condition is equivalent to the requirement that for some finite , .

The latter condition is equivalent to , itself a member of , being expressible as for some rationals , so or, equivalently, α is a root of ; that is, an algebraic number with a minimal polynomial of degree not larger than .

It can similarly be proven that for any finite set of algebraic numbers , ... , the field extension has a finite degree.

Field

Algebraic numbers colored by degree (blue = 4, cyan = 3, red = 2, green = 1). The unit circle is black.[further explanation needed]

The sum, difference, product, and quotient (if the denominator is nonzero) of two algebraic numbers is again algebraic:

For any two algebraic numbers α, β, this follows directly from the fact that the simple extension , for being either , , or (for ) , is a linear subspace of the finite-degree field extension , and therefore has a finite degree itself, from which it follows (as shown above) that is algebraic.

An alternative way of showing this is constructively, by using the resultant.

Algebraic numbers thus form a field[7] (sometimes denoted by , but that usually denotes the adele ring).

Algebraic closure

Every root of a polynomial equation whose coefficients are algebraic numbers is again algebraic. That can be rephrased by saying that the field of algebraic numbers is algebraically closed. In fact, it is the smallest algebraically-closed field containing the rationals and so it is called the algebraic closure of the rationals.

That the field of algebraic numbers is algebraically closed can be proven as follows: Let β be a root of a polynomial with coefficients that are algebraic numbers , , ... . The field extension then has a finite degree with respect to . The simple extension then has a finite degree with respect to (since all powers of β can be expressed by powers of up to ). Therefore, also has a finite degree with respect to . Since is a linear subspace of , it must also have a finite degree with respect to , so β must be an algebraic number.

Numbers defined by radicals

Any number that can be obtained from the integers using a finite number of additions, subtractions, multiplications, divisions, and taking (possibly complex) nth roots where n is a positive integer are algebraic. The converse, however, is not true: there are algebraic numbers that cannot be obtained in this manner. These numbers are roots of polynomials of degree 5 or higher, a result of Galois theory (see Quintic equations and the Abel–Ruffini theorem). For example, the equation:

has a unique real root that cannot be expressed in terms of only radicals and arithmetic operations.

Closed-form number

Algebraic numbers are all numbers that can be defined explicitly or implicitly in terms of polynomials, starting from the rational numbers. One may generalize this to "closed-form numbers", which may be defined in various ways. Most broadly, all numbers that can be defined explicitly or implicitly in terms of polynomials, exponentials, and logarithms are called "elementary numbers", and these include the algebraic numbers, plus some transcendental numbers. Most narrowly, one may consider numbers explicitly defined in terms of polynomials, exponentials, and logarithms – this does not include all algebraic numbers, but does include some simple transcendental numbers such as e or ln 2.

Algebraic integers

Algebraic numbers colored by leading coefficient (red signifies 1 for an algebraic integer)[further explanation needed]

An algebraic integer is an algebraic number that is a root of a polynomial with integer coefficients with leading coefficient 1 (a monic polynomial). Examples of algebraic integers are and Therefore, the algebraic integers constitute a proper superset of the integers, as the latter are the roots of monic polynomials xk for all . In this sense, algebraic integers are to algebraic numbers what integers are to rational numbers.

The sum, difference and product of algebraic integers are again algebraic integers, which means that the algebraic integers form a ring. The name algebraic integer comes from the fact that the only rational numbers that are algebraic integers are the integers, and because the algebraic integers in any number field are in many ways analogous to the integers. If K is a number field, its ring of integers is the subring of algebraic integers in K, and is frequently denoted as OK. These are the prototypical examples of Dedekind domains.

Special classes

Notes

  1. ^ Some of the following examples come from Hardy & Wright (1972, pp. 159–160, 178–179)
  2. ^ Garibaldi 2008.
  3. ^ Also, Liouville's theorem can be used to "produce as many examples of transcendental numbers as we please," cf. Hardy & Wright (1972, p. 161ff)
  4. ^ Hardy & Wright 1972, p. 160, 2008:205.
  5. ^ Niven 1956, Theorem 7.5..
  6. ^ Niven 1956, Corollary 7.3..
  7. ^ Niven 1956, p. 92.

References

  • Artin, Michael (1991), Algebra, Prentice Hall, ISBN 0-13-004763-5, MR 1129886
  • Garibaldi, Skip (June 2008), "Somewhat more than governors need to know about trigonometry", Mathematics Magazine, 81 (3): 191–200, doi:10.1080/0025570x.2008.11953548, JSTOR 27643106
  • Hardy, Godfrey Harold; Wright, Edward M. (1972), An introduction to the theory of numbers (5th ed.), Oxford: Clarendon, ISBN 0-19-853171-0
  • Ireland, Kenneth; Rosen, Michael (1990) [1st ed. 1982], A Classical Introduction to Modern Number Theory (2nd ed.), Berlin: Springer, doi:10.1007/978-1-4757-2103-4, ISBN 0-387-97329-X, MR 1070716
  • Lang, Serge (2002) [1st ed. 1965], Algebra (3rd ed.), New York: Springer, ISBN 978-0-387-95385-4, MR 1878556
  • Niven, Ivan M. (1956), Irrational Numbers, Mathematical Association of America
  • Ore, Øystein (1948), Number Theory and Its History, New York: McGraw-Hill

Read other articles:

American attorney and politician This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (January 2022) R. Rex ParrisParris in 2011Mayor of Lancaster, CaliforniaIncumbentAssumed office April 2008 Personal detailsBorn1952 (age 70–71)[1]Lancaster, California, U.S.Political partyRepublicanSpouseCarrol ParrisChildren4EducationSouthwestern School of Law (J.D.)OccupationAttorneyWebsitehttps://www.pa…

National Infantry MuseumEstablished2009Location1775 Legacy Way, Columbus, Georgia 31903, United StatesCoordinates32°23′22″N 84°57′19″W / 32.38944°N 84.95528°W / 32.38944; -84.95528Visitors300,000+ per yearDirectorScott A. D. DaubertCuratorJefferson C. Reed and Christopher A. GoodrowWebsitenationalinfantrymuseum.org The National Infantry Museum and Soldier Center is a museum located in Columbus, Georgia, just outside the Maneuver Center of Excellence at Fort Mo…

Albert Weinberg in Genf (2011) Albert Weinberg (* 9. April 1922 in Lüttich; † 29. September 2011 in Corseaux) war ein belgischer Comiczeichner. Inhaltsverzeichnis 1 Werdegang 2 Werke 3 Weblinks 4 Einzelnachweise Werdegang Weinberg, 1922 in Lüttich geboren, studierte nach dem Schulabschluss Jura und arbeitete gleichzeitig als Assistent für Victor Hubinon, den Schöpfer des franko-belgischen Klassikers Buck Danny. Er übernahm Hubinons Serie Joë la Tornade und schuf mit Luc Condor und Roc Me…

Achille Eyraud Información personalNombre de nacimiento Honoré Achille EyraudNacimiento 1821Le Puy-en-Velay,, FranciaFallecimiento 1882Sepultura Alto Loira Nacionalidad francésInformación profesionalOcupación Dramaturgo, periodista y escritor.Seudónimo Achille Lafont Lengua literaria francésGénero Ciencia ficciónObras notables Viaje a VenusDistinciones Caballero de la Orden Nacional de la Legión de Honor [editar datos en Wikidata] Honoré Achille Eyraud (Le Puy-en-Velay,…

Cementerio de San Antonio Abad Escultura Amor más allá de la muerte, en el Cementerio de San Antonio Abad, de Alcoy.Datos generalesTipo cementerioLocalización Alcoy (España)Coordenadas 38°40′52″N 0°28′29″O / 38.68115, -0.47470833333333Construcción 1885Inauguración 1885Propietario Ayuntamiento de AlcoyDiseño y construcciónArquitecto Enrique Vilaplana Juliá [editar datos en Wikidata] El cementerio de San Antonio Abad situado en la carretera a la Font Ro…

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) إلين كاسيدي معلومات شخصية الميلاد 15 مارس 1930  الوفاة أبريل 2014 (83–84 سنة)  أورانج  مواطنة أستراليا  الحياة العملية المدرسة الأم جامعة سيدني  المهنة…

Montañas Bunya Un pequeño arroyo en el parque nacionalUbicación geográficaCordillera Gran Cordillera DivisoriaCoordenadas 26°50′S 151°33′E / -26.83, 151.55Ubicación administrativaPaís  AustraliaDivisión QueenslandCaracterísticasMáxima cota (Monte Kiangarow (1135 m))[editar datos en Wikidata] La sierra de Bunya es un distintivo conjunto de picos formando una sección aislada de la Gran Cordillera Divisoria en el sur de Queensland. La cadena montañosa…

Kama Кама Flusssystem von Kama und Wolga Flusssystem von Kama und Wolga Daten Gewässerkennzahl RU: 10010100112111100000016 Lage im Nordosten des europäischen Teils von Russland Flusssystem Wolga Abfluss über Wolga → Kaspisches Meer Quelle Kamahöhen westlich von Perm58° 11′ 43″ N, 53° 45′ 16″ O58.19513888888953.754305555556336 Quellhöhe 336 m Mündung in den Kuibyschewer Stausee und die …

Ljuba Jakymtschuk Ljubow „Ljuba“ Wassyliwna Jakymtschuk, auch Lyuba Yakimchuk (ukrainisch Любов Василівна Якимчук; geboren 19. November 1985 in Perwomajsk (Luhansk)) ist eine ukrainische Dichterin und Autorin. Inhaltsverzeichnis 1 Leben 2 Werk 3 Veröffentlichungen 4 Weblinks 5 Einzelnachweise Leben Ljuba Jakymtschuk wuchs in einer kleinen Industriestadt in der Ostukraine auf. Sie absolvierte ein Studium an der Nationalen Taras-Schewtschenko-Universität Luhansk, anschli…

Chittering kan verwijzen naar: Chittering (Engeland), een gehucht in het Engelse graafschap Cambridgeshire. Chittering (Australië), een dorp in het Australische LGA Shire of Chittering. Bekijk alle artikelen waarvan de titel begint met Chittering of met Chittering in de titel. Dit is een doorverwijspagina, bedoeld om de verschillen in betekenis of gebruik van Chittering inzichtelijk te maken. Op deze pagina staat een uitleg van de verschillende betekenissen van Chitteri…

Brookline Plaats in de Verenigde Staten Vlag van Verenigde Staten Locatie van Brookline in Massachusetts Locatie van Massachusetts in de VS Situering County Norfolk County Type plaats Town Staat Massachusetts Coördinaten 42° 20′ NB, 71° 7′ WL Algemeen Oppervlakte 17,6 km² - land 17,5 km² - water 0,1 km² Inwoners (2000) 57.107 Hoogte 15 m Foto's Portaal    Verenigde Staten Brookline is een Amerikaanse plaats en gemeente met 57.107 inwoners in Norfolk County in de staat…

Девід Макміллан Народився 16 березня 1968(1968-03-16) (55 років)Беллсгілл, Ланаркшир, Шотландія, Велика БританіяКраїна  Велика Британія СШАДіяльність хімік, викладач університетуГалузь органічна хімія[1], каталіз[1] і Органічний синтез[1]Відомий завдяки хі…

エリーザベト・ドロテアElisabeth Dorothea ヘッセン家 出生 (1676-04-24) 1676年4月24日 神聖ローマ帝国 ヘッセン=ダルムシュタット方伯領、ダルムシュタット死去 (1721-09-09) 1721年9月9日(45歳没) 神聖ローマ帝国 ヘッセン=ホンブルク方伯領、ホンブルク埋葬 神聖ローマ帝国 ヘッセン=ホンブルク方伯領、ホンブルク、バート・ホンブルク城配偶者 ヘッセン=ホンブルク方伯フ

جزء من سلسلة عنالفكر البعثي المنظمات الأم حركة البعث العربي (1940–1947)حزب البعث العربي الاشتراكي (1947–1966)البعث العراقي (1966–2003)البعث السوري (1966–الوقت الحاضر) شخصيات رئيسية  زكي الأرسوزي  ميشيل عفلق  صلاح البيطار   وهيب الغانم  فائز إسماعيل  فؤاد ا…

Central African politician Firmin NgrébadaPrime Minister of the Central African RepublicIn office25 February 2019 – 15 June 2021PresidentFaustin-Archange TouadéraPreceded bySimplice SarandjiSucceeded byHenri-Marie Dondra Personal detailsBorn (1968-05-24) 24 May 1968 (age 55)[1]Bangui, Central African RepublicPolitical partyUnited Hearts MovementEducationUniversity of BanguiProfessionPolitician, principal labor inspector Firmin Ngrébada (born 24 May 1968)[1] is …

Dalam artikel ini, nama keluarganya adalah Hong. Hong Kyung-MinInformasi latar belakangNama lahir홍경민Lahir09 Februari 1976 (umur 47)AsalSeoul, Korea SelatanGenrePop rock, Latin dancePekerjaanPenyanyi, aktor, djInstrumenGitar, keyboard, drum, saxophone, harmonicaTahun aktif1997–sekarangSitus webhongkyungmin.co.kr Stage nameHangul홍경민 Alih AksaraHong Gyeong-minMcCune–ReischauerHong Kyŏng-min Hong Kyung-Min (Hangul: 홍경민; lahir 9 Februari 1976) adalah penyanyi pop …

Untuk kegunaan lain, lihat Rhinoplasti (disambiguasi). RhinoplastiIntervensiRhinoplasti: Kartilag lateral bawah (kartilag alar besar) diberi modifikasi plastik melalui nostril kiri.Pelafalan/ˈraɪnəˌplæsti/ ICD-9-CM21.87MeSHD012225MedlinePlus002983[sunting di Wikidata] Rhinoplasti (bahasa Yunani: ῥίς rhis, hidung + πλάσσειν plassein, membentuk), yang umumnya disebut sebagai pekerjaan hidung, adalah sebuah prosedur pembedahan plastik untuk membenarkan dan merekonstruk…

1992 Sega Genesis video game This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Muhammad Ali Heavyweight Boxing – news · newspapers · books · scholar · JSTOR (December 2020) (Learn how and when to remove this template message) 1992 video gameMuhammad Ali Heavyweight BoxingPackaging for the North American Genesis v…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: GF Culinary – berita · surat kabar · buku · cendekiawan · JSTOR Boga GroupPT Gading Food CulinaryJenisPerseroan terbatasIndustriRitelDidirikan2003PendiriHenky RusliKantorpusatJakarta, IndonesiaProdukMakanan…

1945: William Joyce terbaring di ambulans di bawah penjagaan bersenjata sebelum dibawa dari Markas Besar Angkatan Darat Kedua Inggris ke rumah sakit. Lord Haw-Haw adalah julukan yang diterapkan kepada William Joyce, yang menyiarkan propaganda Nazi ke Britania Raya dari Jerman selama Perang Dunia Kedua. Siaran dibuka dengan Germany calling, Germany calling, diucapkan dengan aksen Inggris kelas atas yang dibuat-buat. Julukan yang sama juga diterapkan pada beberapa penyiar propaganda bahasa Inggris…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 18.188.211.8