Versor

In mathematics, a versor is a quaternion of norm one (a unit quaternion). Each versor has the form

where the r2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions). The corresponding 3-dimensional rotation has the angle 2a about the axis r in axis–angle representation. In case a = π/2 (a right angle), then , and the resulting unit vector is termed a right versor.

The collection of versors with quaternion multiplication forms a group, and the set of versors is a 3-sphere in the 4-dimensional quaternion algebra.

Presentation on 3- and 2-spheres

arc AB + arc BC = arc AC

Hamilton denoted the versor of a quaternion q by the symbol U q. He was then able to display the general quaternion in polar coordinate form

q = T q U q,

where T q is the norm of q. The norm of a versor is always equal to one; hence they occupy the unit 3-sphere in . Examples of versors include the eight elements of the quaternion group. Of particular importance are the right versors, which have angle π/2. These versors have zero scalar part, and so are vectors of length one (unit vectors). The right versors form a sphere of square roots of −1 in the quaternion algebra. The generators i, j, and k are examples of right versors, as well as their additive inverses. Other versors include the twenty-four Hurwitz quaternions that have the norm 1 and form vertices of a 24-cell polychoron.

Hamilton defined a quaternion as the quotient of two vectors. A versor can be defined as the quotient of two unit vectors. For any fixed plane Π the quotient of two unit vectors lying in Π depends only on the angle (directed) between them, the same a as in the unit vector–angle representation of a versor explained above. That's why it may be natural to understand corresponding versors as directed arcs that connect pairs of unit vectors and lie on a great circle formed by intersection of Π with the unit sphere, where the plane Π passes through the origin. Arcs of the same direction and length (or, the same, subtended angle in radians) are equipollent and correspond to the same versor.[1]

Such an arc, although lying in the three-dimensional space, does not represent a path of a point rotating as described with the sandwiched product with the versor. Indeed, it represents the left multiplication action of the versor on quaternions that preserves the plane Π and the corresponding great circle of 3-vectors. The 3-dimensional rotation defined by the versor has the angle two times the arc's subtended angle, and preserves the same plane. It is a rotation about the corresponding vector r, that is perpendicular to Π.

On three unit vectors, Hamilton writes[2]

and
imply

Multiplication of quaternions of norm one corresponds to the (non-commutative) "addition" of great circle arcs on the unit sphere. Any pair of great circles either is the same circle or has two intersection points. Hence, one can always move the point B and the corresponding vector to one of these points such that the beginning of the second arc will be the same as the end of the first arc.

An equation

implicitly specifies the unit vector–angle representation for the product of two versors. Its solution is an instance of the general Campbell–Baker–Hausdorff formula in Lie group theory. As the 3-sphere represented by versors in is a 3-parameter Lie group, practice with versor compositions is a step into Lie theory. Evidently versors are the image of the exponential map applied to a ball of radius π in the quaternion subspace of vectors.

Versors compose as aforementioned vector arcs, and Hamilton referred to this group operation as "the sum of arcs", but as quaternions they simply multiply.

The geometry of elliptic space has been described as the space of versors.[3]

Representation of SO(3)

The orthogonal group in three dimensions, rotation group SO(3), is frequently interpreted with versors via the inner automorphism where u is a versor. Indeed, if

and vector s is perpendicular to r,

then

by calculation.[4] The plane is isomorphic to and the inner automorphism, by commutativity, reduces to the identity mapping there. Since quaternions can be interpreted as an algebra of two complex dimensions, the rotation action can also be viewed through the special unitary group SU(2).

For a fixed r, versors of the form where form a subgroup isomorphic to the circle group. Orbits of the left multiplication action of this subgroup are fibers of a fiber bundle over the 2-sphere, known as Hopf fibration in the case r = i  ; other vectors give isomorphic, but not identical fibrations. Lyons (2003) gives an elementary introduction to quaternions to elucidate the Hopf fibration as a mapping on unit quaternions. He writes "the fibers of the Hopf map are circles in S".[5]

Versors have been used to represent rotations of the Bloch sphere with quaternion multiplication.[6]

Elliptic space

The facility of versors illustrate elliptic geometry, in particular elliptic space, a three-dimensional realm of rotations. The versors are the points of this elliptic space, though they refer to rotations in 4-dimensional Euclidean space. Given two fixed versors u and v, the mapping is an elliptic motion. If one of the fixed versors is 1, then the motion is a Clifford translation of the elliptic space, named after William Kingdon Clifford who was a proponent of the space. An elliptic line through versor u is Parallelism in the space is expressed by Clifford parallels. One of the methods of viewing elliptic space uses the Cayley transform to map the versors to

Subgroups

The set of all versors, with their multiplication as quaternions, forms a continuous group G. For a fixed pair of right versors, is a one-parameter subgroup that is isomorphic to the circle group.

Next consider the finite subgroups, beyond the quaternion group Q8:[7][8]

As noted by Hurwitz, the 16 quaternions all have norm one, so they are in G. Joined with Q8, these unit Hurwitz quaternions form a group G2 of order 24 called the binary tetrahedral group. The group elements, taken as points on S3, form a 24-cell.

By a process of bitruncation of the 24-cell, the 48-cell on G is obtained, and these versors multiply as the binary octahedral group.

Another subgroup is formed by 120 icosians which multiply in the manner of the binary icosahedral group.

Hyperbolic versor

A hyperbolic versor is a generalization of quaternionic versors to indefinite orthogonal groups, such as Lorentz group. It is defined as a quantity of the form

where

Such elements arise in split algebras, for example split-complex numbers or split-quaternions. It was the algebra of tessarines discovered by James Cockle in 1848 that first provided hyperbolic versors. In fact, Cockle wrote the above equation (with j in place of r) when he found that the tessarines included the new type of imaginary element.

This versor was used by Homersham Cox (1882/1883) in relation to quaternion multiplication.[9][10] The primary exponent of hyperbolic versors was Alexander Macfarlane, as he worked to shape quaternion theory to serve physical science.[11] He saw the modelling power of hyperbolic versors operating on the split-complex number plane, and in 1891 he introduced hyperbolic quaternions to extend the concept to 4-space. Problems in that algebra led to use of biquaternions after 1900. In a widely seen review, Macfarlane wrote:

... the root of a quadratic equation may be versor in nature or scalar in nature. If it is versor in nature, then the part affected by the radical involves the axis perpendicular to the plane of reference, and this is so, whether the radical involves the square root of minus one or not. In the former case the versor is circular, in the latter hyperbolic.[12]

Today the concept of a one-parameter group subsumes the concepts of versor and hyperbolic versor as the terminology of Sophus Lie has replaced that of Hamilton and Macfarlane. In particular, for each r such that r r = +1 or r r = −1, the mapping takes the real line to a group of hyperbolic or ordinary versors. In the ordinary case, when r and r are antipodes on a sphere, the one-parameter groups have the same points but are oppositely directed. In physics, this aspect of rotational symmetry is termed a doublet.

Robb (1911) defined the parameter rapidity, which specifies a change in frame of reference. This rapidity parameter corresponds to the real variable in a one-parameter group of hyperbolic versors. With the further development of special relativity the action of a hyperbolic versor came to be called a Lorentz boost.[13]

Lie theory

Sophus Lie was less than a year old when Hamilton first described quaternions, but Lie's name has become associated with all groups generated by exponentiation. The set of versors with their multiplication has been denoted Sl(1,q) by Gilmore (1974).[14] Sl(1,q) is the special linear group of one dimension over quaternions, the "special" indicating that all elements are of norm one. The group is isomorphic to SU(2,c), a special unitary group, a frequently used designation since quaternions and versors are sometimes considered archaic for group theory. The special orthogonal group SO(3,r) of rotations in three dimensions is closely related: it is a 2:1 homomorphic image of SU(2,c).

The subspace is called the Lie algebra of the group of versors. The commutator product is just double the cross product of two vectors, which forms the multiplication operation in the Lie algebra. The close relation to SU(1,c) and SO(3,r) is evident in the isomorphism of their Lie algebras.[14]

Lie groups that contain hyperbolic versors include the group on the unit hyperbola and the special unitary group SU(1,1).

Etymology

The word is derived from Latin versari = "to turn" with the suffix -or forming a noun from the verb (i.e. versor = "the turner"). It was introduced by William Rowan Hamilton in the 1840s in the context of his quaternion theory.

Versors in geometric algebra

The term "versor" is generalised in geometric algebra to indicate a member of the algebra that can be expressed as the product of invertible vectors, .[15][16]

Just as a quaternion versor can be used to represent a rotation of a quaternion , mapping , so a versor in Geometric Algebra can be used to represent the result of reflections on a member of the algebra, mapping .

A rotation can be considered the result of two reflections, so it turns out a quaternion versor can be identified as a 2-versor in the geometric algebra of three real dimensions .

In a departure from Hamilton's definition, multivector versors are not required to have unit norm, just to be invertible. Normalisation can still be useful however, so it is convenient to designate versors as unit versors in a geometric algebra if , where the tilde denotes reversion of the versor.

See also

References

  1. ^ Mukunda, N.; Simon, R.; Sudarshan, G. (1989). "The theory of screws: A new geometric representation for the group SU(1,1)". Journal of Mathematical Physics. 30 (5): 1000–1006. Bibcode:1989JMP....30.1000S. doi:10.1063/1.528365. MR0992568
  2. ^ Hamilton (1899), vol 1, p. 146.
  3. ^ Coxeter, H.S.M. (1950). "Review of Quaternions and Elliptic Space by Georges Lemaître". Mathematical Reviews. MR0031739 (requires subscription)
  4. ^ "Quaternions: Rotation representation". Associative Composition Algebra – via wikibooks.org.
  5. ^ Lyons, David W. (April 2003). "An elementary introduction to the Hopf fibration" (PDF). Mathematics Magazine (book review). 76 (2): 87–98, quote p 95. arXiv:2212.01642. CiteSeerX 10.1.1.583.3499. doi:10.2307/3219300. ISSN 0025-570X. JSTOR 3219300.
  6. ^ Wharton, K.B.; Koch, D. (2015). "Unit quaternions and the Bloch sphere". Journal of Physics A. 48 (23). arXiv:1411.4999. Bibcode:2015JPhA...48w5302W. doi:10.1088/1751-8113/48/23/235302. MR3355237
  7. ^ Stringham, I. (1881). "Determination of the finite quaternion groups". American Journal of Mathematics. 4 (1–4): 345–357. doi:10.2307/2369172. JSTOR 2369172.
  8. ^ Conway, J.H.; Smith, Derek A. (2003). "§ 3.5 The finite groups of quaternions". On Quaternions and Octoniions: Their geometry, arithmetic, and symmetry. A. K. Peters. p. 33. ISBN 1-56881-134-9.
  9. ^ Cox, H. (1883) [1882]. "On the application of quaternions and Grassmann's Ausdehnungslehre to different kinds of uniform space". Transactions of the Cambridge Philosophical Society. 13: 69–143.
  10. ^ Cox, H. (1883) [1882]. "On the application of quaternions and Grassmann's Ausdehnungslehre to different kinds of uniform space". Proceedings of the Cambridge Philosophical Society. 4: 194–196.
  11. ^ Macfarlane, A. (1894). Papers on Space Analysis. New York, NY: B. Westerman – via archive.org. – Note especially papers #2, 3, & 5.
  12. ^ Macfarlane, A. (1899). "Review: A Treatise on Universal Algebra by A.N. Whitehead". Science. 9: 326.
  13. ^ Robb, A. (1911). Optical Geometry of Motion.
  14. ^ a b Gilmore, Robert (1974). "Chapter 5: Some simple examples". Lie Groups, Lie Algebras and some of their Applications. Wiley. pp. 120–135. ISBN 0-471-30179-5. — This text denotes the real, complex, and quaternion division algebras by r, c, and q, respectively, rather than now standard , , and .
  15. ^ Hestenes & Sobczyk (1984), p. 103.
  16. ^ Dorst, Fontijne & Mann (2007), p. 204.

Sources

Hardy, A.S. (1887). "Applications to spherical trigonometry". Elements of Quaternions. pp. 112–118.
Section IV: Versors and unitary vectors in the system of quaternions.
Section V: Versor and unitary vectors in vector algebra.

Read other articles:

Potret aktivis perempuan Sylvia Pankhurst tahun 1910 Estelle Sylvia Pankhurst (5 Mei 1882 – 27 September 1960) adalah seorang aktivis perempuan dan salah satu tokoh utama sosialisme asal Inggris. Ia adalah sosok wanita yang aktif mengampanyekan isu kebebasan memberikan hak suara dan pendapat untuk perempuan Inggris di awal abad ke-20.[1] Masa Kecil Merupakan putri kedua dari pendiri organisasi Suffragette (pejuang hak suara perempuan), Emmeline Pankhurst yang aktif pad...

 

 

«Vestito con lo smoking, sono una star. In abiti normali, non sono nessuno.[1]» Dean MartinDean Martin nel 1959 Nazionalità Stati Uniti GenerePopSwingCountryJazzBig band Periodo di attività musicale1939 – 1993 Strumentovoce EtichettaCapitol Records, Reprise Records Album pubblicati75 Studio35 Live3 Colonne sonore1 Raccolte36 Sito ufficiale Modifica dati su Wikidata · Manuale Dean Martin, pseudonimo di Dino Paolo Martino Crocetti (Steubenville, 7 gi...

 

 

Pride of Bruges in the Port of Zeebrugge History NameNorsun (1987-2003)Pride of Bruges (2003-2020) GNV Antares (2021-) OwnerNedlloyd (1987-1996)P&O Ferries (1996-2021) Grandi Navi Veloci (2021-) OperatorNorth Sea Ferries (1987-1996) P&O Ferries (1996-2021) Grandi Navi Veloci (2021-) Port of registry 1987-2021: Rotterdam,  Netherlands 2021: Limassol,  Cyprus 2021-present: Napoli,  Italy Route Hull-Rotterdam (1987-2002) Hull-Zeebrugge (2002-2020) Naples-Palermo (2021 onw...

1994 single by the Offspring Come Out and PlaySingle by the Offspringfrom the album Smash B-sideSessionCome Out and Play (acoustic)ReleasedMarch 10, 1994Recorded1994GenrePunk rock[1][2]Length3:17LabelEpitaphSongwriter(s)Dexter HollandProducer(s)Thom WilsonThe Offspring singles chronology I'll Be Waiting (1986) Come Out and Play (1994) Self Esteem (1994) Come Out and Play (sometimes subtitled Keep 'Em Separated)[3] is a 1994 song by the American punk rock band the Offsp...

 

 

Shin'ichi Yuki (結城 真一code: ja is deprecated , Yūki Shin'ichi, lahir 11 Mei 1954) adalah model dan aktor asal Jepang. Dia dikenal dengan peran-perannya dalam serial tokusatsu dan drama: sebagai Ippei Akaki / Denzi Red dalam serial Super Sentai Denshi Sentai Denziman. Filmografi Drama televisi Denshi Sentai Denziman (TV Asahi, 1980 - 1981) - Ippei Akaki / Denzi Red Kurama Tengu (episode 8) (TBS, 1982) Film Edisi Film Denshi Sentai Denziman (Toei, 1980) - Ippei Akaki / Denzi Red Lihat p...

 

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

Not to be confused with Marsabit County. Town in Marsabit County, KenyaMarsabitTownThe Marsabit-Moyale road.MarsabitLocation within KenyaShow map of KenyaMarsabitLocation within the Horn of AfricaShow map of Horn of AfricaMarsabitLocation within AfricaShow map of AfricaCoordinates: 2°20′00″N 37°59′00″E / 2.33333°N 37.98333°E / 2.33333; 37.98333Country KenyaCountyMarsabit CountyElevation1,350 m (4,430 ft)Time zoneUTC+3 (EAT) Marsabit is a town...

 

 

Australian politician For the English footballer, see Lionel Murphy (footballer). The HonourableLionel MurphyQCMurphy in 1972Justice of the High Court of AustraliaIn office10 February 1975 – 21 October 1986Nominated byGough WhitlamAppointed bySir John KerrPreceded bySir Douglas MenziesSucceeded byJohn TooheyAttorney-General of AustraliaIn office19 December 1972 – 9 February 1975Prime MinisterGough WhitlamPreceded byGough Whitlam[a]Succeeded byKep EnderbyLeader of...

 

 

Repubblica di TorrigliaDati amministrativiNome ufficialeVI Zona Liguria Lingue parlateItaliano CapitaleGorreto Dipendente daIII Divisione Garibaldi Cichero PoliticaForma di StatoRepubblica partigiana Nascitaestate 1944 Fineaprile-maggio 1945 Territorio e popolazioneEconomiaValutaLira italiana Evoluzione storicaPreceduto da Repubblica Sociale Italiana Ora parte di Italia Modifica dati su Wikidata · Manuale Repubblica di Torriglia[1] era il nome che i partigiani della Di...

Anikka AlbriteDati biograficiNome di nascitaThrace Ardith Allen Nazionalità Stati Uniti Dati fisiciAltezza168 cm Peso57 kg Etniacaucasica Occhiazzurri Capellibiondi Seno naturalesi Misure34B-24-39[1] Dati professionaliAltri pseudonimiAnikka Albright, Anikka Albrite, Annika Albright, Annika Albrite, Annikka Albrite[1] Film girati 788 come attrice 13 come regista[1] Modifica dati su Wikidata · Manuale Anikka Albrite, pseudonimo di Thrace Ardith Allen (Den...

 

 

SMA Negeri 1 TanjungpandanInformasiDidirikan25 Juli 1963; 60 tahun lalu (1963-07-25)AkreditasiANomor Pokok Sekolah Nasional10900459Kepala SekolahJantimala, M.PdJumlah kelas25 Kelas (Terdiri dari 8 Kelas X, 9 Kelas XI, 8 Kelas XII)Jurusan atau peminatanMIA, IIS, BHSRentang kelasXI MIA, XI IIS, XI BHS, XII MIA, XII IIS, XII BHSKurikulumKurikulum 2013, Kurikulum MerdekaJumlah siswa+800 siswaStatusNegeriAlamatLokasiJl. Jendral Gatot Subroto, Tanjung Pandan, Kepulauan Bangka Be...

 

 

Bandar Udara Douglas–CharlesIATA: DOMICAO: TDPDInformasiJenisPublikPemilikPemerintah DominikaPengelolaDominica Air & Otoritas Pelabuhan LautMelayaniMarigot dan Roseau.LokasiDominikaKetinggian dpl mdplKoordinat15°32′49″N 061°18′00″W / 15.54694°N 61.30000°W / 15.54694; -61.30000Koordinat: 15°32′49″N 061°18′00″W / 15.54694°N 61.30000°W / 15.54694; -61.30000Situs webdouglascharlesairport.comPetaLua error in Mo...

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

 

Pengkhotbah 3Lima Gulungan (Megilloth) lengkap pada Kodeks Leningrad (1008 Masehi), dengan urutan: Rut, Kidung Agung, Pengkhotbah, Ratapan dan Ester.KitabKitab PengkhotbahKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen21← pasal 2 pasal 4 → Pengkhotbah 3 (disingkat Pkh 3) adalah pasal ketiga dari Kitab Pengkhotbah dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Secara tradisional diyakini digubah oleh raja Salomo, putra raja Daud.[1 ...

Aleksander mengunjungi Diogenes. Lukisan tahun 1910 oleh William Rainey. Pertemuan Diogenes dan Aleksander adalah salah satu cerita yang paling banyak dibahas dari sejarah filsafat. Banyak versi yang ada. Hal yang paling terkenal menghubungkannya sebagai bukti ketidakpedulian Diogenes terhadap kekuasaan, kekayaan, dan kesopanan.[1] Plutarkhos dan Laertios melaporkan bahwa Aleksander dan Diogenes meninggal pada hari yang sama pada tahun 323 SM.[2] Meskipun kebetulan tersebut di...

 

 

Katedral Ordinariat Militer BrasíliaKatedral Militer Santa Maria Ratu Militer PerdamaianCatedral Militar Santa Maria dos Militares Rainha da PazKatedral Ordinariat Militer BrasíliaLokasiBrasíliaNegaraBrasilDenominasiGereja Katolik RomaSitus webCatedral Rainha da PazArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Agung Militer Brasil Katedral Militer Santa Maria Ratu Militer Perdamaian[1] (juga Katedral Militer Brasília; Portugis: Catedral Militar S...

 

 

جائزة أستراليا الكبرى 1986 (بالإنجليزية: LI Foster's Australian Grand Prix)‏  السباق 16 من أصل 16 في بطولة العالم لسباقات الفورمولا واحد موسم 1986 السلسلة بطولة العالم لسباقات فورمولا 1 موسم 1986  البلد أستراليا  التاريخ 26 أكتوبر 1986 مكان التنظيم حلبة أديليد ستريت، جنوب أستراليا طول الم...

Guangzhou Metro station Xiagang夏港PlatformChinese nameChinese夏港站TranscriptionsStandard MandarinHanyu PinyinXiàgǎng ZhànYue: CantoneseJyutpinghaa6gong2 zaam6 General informationLocationSouth side of the fork of Kaifa Avenue (开发大道) and Mingzhu Road (明珠路), Huangpu District, Guangzhou, GuangdongChinaCoordinates23°04′11″N 113°31′06″E / 23.069722°N 113.518333°E / 23.069722; 113.518333Operated byGuangzhou Metro Co. Ltd.Line(s)  ...

 

 

Claude Fauchet, incisione di Thomas de Leu Claude Fauchet (Parigi, 3 luglio 1530 – gennaio 1602) è stato uno storico e un antiquario francese. Della sua infanzia si conoscono pochi particolari. Si applica nello studio dei primi cronachisti francesi, proponendosi di pubblicare estratti che avrebbero fatto luce sui primi tempi della monarchia. Durante le guerre di religione, allorché fu costretto ad abbandonare Parigi con Enrico III nel 1589 (probabilmente non vi ritornerà prima del 18 apr...