Hypercube

In the following perspective projections, cube is 3-cube and tesseract is 4-cube.

In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract. It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length. A unit hypercube's longest diagonal in n dimensions is equal to .

An n-dimensional hypercube is more commonly referred to as an n-cube or sometimes as an n-dimensional cube.[1][2] The term measure polytope (originally from Elte, 1912)[3] is also used, notably in the work of H. S. M. Coxeter who also labels the hypercubes the γn polytopes.[4]

The hypercube is the special case of a hyperrectangle (also called an n-orthotope).

A unit hypercube is a hypercube whose side has length one unit. Often, the hypercube whose corners (or vertices) are the 2n points in Rn with each coordinate equal to 0 or 1 is called the unit hypercube.

Construction

By the number of dimensions

An animation showing how to create a tesseract from a point.

A hypercube can be defined by increasing the numbers of dimensions of a shape:

0 – A point is a hypercube of dimension zero.
1 – If one moves this point one unit length, it will sweep out a line segment, which is a unit hypercube of dimension one.
2 – If one moves this line segment its length in a perpendicular direction from itself; it sweeps out a 2-dimensional square.
3 – If one moves the square one unit length in the direction perpendicular to the plane it lies on, it will generate a 3-dimensional cube.
4 – If one moves the cube one unit length into the fourth dimension, it generates a 4-dimensional unit hypercube (a unit tesseract).

This can be generalized to any number of dimensions. This process of sweeping out volumes can be formalized mathematically as a Minkowski sum: the d-dimensional hypercube is the Minkowski sum of d mutually perpendicular unit-length line segments, and is therefore an example of a zonotope.

The 1-skeleton of a hypercube is a hypercube graph.

Vertex coordinates

Projection of a rotating tesseract.

A unit hypercube of dimension is the convex hull of all the points whose Cartesian coordinates are each equal to either or . These points are its vertices. The hypercube with these coordinates is also the cartesian product of copies of the unit interval . Another unit hypercube, centered at the origin of the ambient space, can be obtained from this one by a translation. It is the convex hull of the points whose vectors of Cartesian coordinates are

Here the symbol means that each coordinate is either equal to or to . This unit hypercube is also the cartesian product . Any unit hypercube has an edge length of and an -dimensional volume of .

The -dimensional hypercube obtained as the convex hull of the points with coordinates or, equivalently as the Cartesian product is also often considered due to the simpler form of its vertex coordinates. Its edge length is , and its -dimensional volume is .

Faces

Every hypercube admits, as its faces, hypercubes of a lower dimension contained in its boundary. A hypercube of dimension admits facets, or faces of dimension : a (-dimensional) line segment has endpoints; a (-dimensional) square has sides or edges; a -dimensional cube has square faces; a (-dimensional) tesseract has three-dimensional cubes as its facets. The number of vertices of a hypercube of dimension is (a usual, -dimensional cube has vertices, for instance).[5]

The number of the -dimensional hypercubes (just referred to as -cubes from here on) contained in the boundary of an -cube is

,[6]     where and denotes the factorial of .

For example, the boundary of a -cube () contains cubes (-cubes), squares (-cubes), line segments (-cubes) and vertices (-cubes). This identity can be proven by a simple combinatorial argument: for each of the vertices of the hypercube, there are ways to choose a collection of edges incident to that vertex. Each of these collections defines one of the -dimensional faces incident to the considered vertex. Doing this for all the vertices of the hypercube, each of the -dimensional faces of the hypercube is counted times since it has that many vertices, and we need to divide by this number.

The number of facets of the hypercube can be used to compute the -dimensional volume of its boundary: that volume is times the volume of a -dimensional hypercube; that is, where is the length of the edges of the hypercube.

These numbers can also be generated by the linear recurrence relation.

,     with , and when , , or .

For example, extending a square via its 4 vertices adds one extra line segment (edge) per vertex. Adding the opposite square to form a cube provides line segments.

The extended f-vector for an n-cube can also be computed by expanding (concisely, (2,1)n), and reading off the coefficients of the resulting polynomial. For example, the elements of a tesseract is (2,1)4 = (4,4,1)2 = (16,32,24,8,1).

Number of -dimensional faces of a -dimensional hypercube (sequence A038207 in the OEIS)
m 0 1 2 3 4 5 6 7 8 9 10
n n-cube Names Schläfli
Coxeter
Vertex
0-face
Edge
1-face
Face
2-face
Cell
3-face

4-face

5-face

6-face

7-face

8-face

9-face

10-face
0 0-cube Point
Monon
( )

1
1 1-cube Line segment
Dion[7]
{}

2 1
2 2-cube Square
Tetragon
{4}

4 4 1
3 3-cube Cube
Hexahedron
{4,3}

8 12 6 1
4 4-cube Tesseract
Octachoron
{4,3,3}

16 32 24 8 1
5 5-cube Penteract
Deca-5-tope
{4,3,3,3}

32 80 80 40 10 1
6 6-cube Hexeract
Dodeca-6-tope
{4,3,3,3,3}

64 192 240 160 60 12 1
7 7-cube Hepteract
Tetradeca-7-tope
{4,3,3,3,3,3}

128 448 672 560 280 84 14 1
8 8-cube Octeract
Hexadeca-8-tope
{4,3,3,3,3,3,3}

256 1024 1792 1792 1120 448 112 16 1
9 9-cube Enneract
Octadeca-9-tope
{4,3,3,3,3,3,3,3}

512 2304 4608 5376 4032 2016 672 144 18 1
10 10-cube Dekeract
Icosa-10-tope
{4,3,3,3,3,3,3,3,3}

1024 5120 11520 15360 13440 8064 3360 960 180 20 1

Graphs

An n-cube can be projected inside a regular 2n-gonal polygon by a skew orthogonal projection, shown here from the line segment to the 16-cube.

Petrie polygon Orthographic projections

Line segment

Square

Cube

Tesseract

5-cube

6-cube

7-cube

8-cube

9-cube

10-cube

11-cube

12-cube

13-cube

14-cube

15-cube

The hypercubes are one of the few families of regular polytopes that are represented in any number of dimensions.[8]

The hypercube (offset) family is one of three regular polytope families, labeled by Coxeter as γn. The other two are the hypercube dual family, the cross-polytopes, labeled as βn, and the simplices, labeled as αn. A fourth family, the infinite tessellations of hypercubes, is labeled as δn.

Another related family of semiregular and uniform polytopes is the demihypercubes, which are constructed from hypercubes with alternate vertices deleted and simplex facets added in the gaps, labeled as n.

n-cubes can be combined with their duals (the cross-polytopes) to form compound polytopes:

Relation to (n−1)-simplices

The graph of the n-hypercube's edges is isomorphic to the Hasse diagram of the (n−1)-simplex's face lattice. This can be seen by orienting the n-hypercube so that two opposite vertices lie vertically, corresponding to the (n−1)-simplex itself and the null polytope, respectively. Each vertex connected to the top vertex then uniquely maps to one of the (n−1)-simplex's facets (n−2 faces), and each vertex connected to those vertices maps to one of the simplex's n−3 faces, and so forth, and the vertices connected to the bottom vertex map to the simplex's vertices.

This relation may be used to generate the face lattice of an (n−1)-simplex efficiently, since face lattice enumeration algorithms applicable to general polytopes are more computationally expensive.

Generalized hypercubes

Regular complex polytopes can be defined in complex Hilbert space called generalized hypercubes, γp
n
= p{4}2{3}...2{3}2, or ... Real solutions exist with p = 2, i.e. γ2
n
= γn = 2{4}2{3}...2{3}2 = {4,3,..,3}. For p > 2, they exist in . The facets are generalized (n−1)-cube and the vertex figure are regular simplexes.

The regular polygon perimeter seen in these orthogonal projections is called a Petrie polygon. The generalized squares (n = 2) are shown with edges outlined as red and blue alternating color p-edges, while the higher n-cubes are drawn with black outlined p-edges.

The number of m-face elements in a p-generalized n-cube are: . This is pn vertices and pn facets.[9]

Generalized hypercubes
p=2 p=3 p=4 p=5 p=6 p=7 p=8

γ2
2
= {4} =
4 vertices

γ3
2
=
9 vertices

γ4
2
=
16 vertices

γ5
2
=
25 vertices

γ6
2
=
36 vertices

γ7
2
=
49 vertices

γ8
2
=
64 vertices

γ2
3
= {4,3} =
8 vertices

γ3
3
=
27 vertices

γ4
3
=
64 vertices

γ5
3
=
125 vertices

γ6
3
=
216 vertices

γ7
3
=
343 vertices

γ8
3
=
512 vertices

γ2
4
= {4,3,3}
=
16 vertices

γ3
4
=
81 vertices

γ4
4
=
256 vertices

γ5
4
=
625 vertices

γ6
4
=
1296 vertices

γ7
4
=
2401 vertices

γ8
4
=
4096 vertices

γ2
5
= {4,3,3,3}
=
32 vertices

γ3
5
=
243 vertices

γ4
5
=
1024 vertices

γ5
5
=
3125 vertices

γ6
5
=
7776 vertices
γ7
5
=
16,807 vertices
γ8
5
=
32,768 vertices

γ2
6
= {4,3,3,3,3}
=
64 vertices

γ3
6
=
729 vertices

γ4
6
=
4096 vertices

γ5
6
=
15,625 vertices
γ6
6
=
46,656 vertices
γ7
6
=
117,649 vertices
γ8
6
=
262,144 vertices

γ2
7
= {4,3,3,3,3,3}
=
128 vertices

γ3
7
=
2187 vertices
γ4
7
=
16,384 vertices
γ5
7
=
78,125 vertices
γ6
7
=
279,936 vertices
γ7
7
=
823,543 vertices
γ8
7
=
2,097,152 vertices

γ2
8
= {4,3,3,3,3,3,3}
=
256 vertices

γ3
8
=
6561 vertices
γ4
8
=
65,536 vertices
γ5
8
=
390,625 vertices
γ6
8
=
1,679,616 vertices
γ7
8
=
5,764,801 vertices
γ8
8
=
16,777,216 vertices

Relation to exponentiation

Any positive integer raised to another positive integer power will yield a third integer, with this third integer being a specific type of figurate number corresponding to an n-cube with a number of dimensions corresponding to the exponential. For example, the exponent 2 will yield a square number or "perfect square", which can be arranged into a square shape with a side length corresponding to that of the base. Similarly, the exponent 3 will yield a perfect cube, an integer which can be arranged into a cube shape with a side length of the base. As a result, the act of raising a number to 2 or 3 is more commonly referred to as "squaring" and "cubing", respectively. However, the names of higher-order hypercubes do not appear to be in common use for higher powers.

See also

Notes

  1. ^ Paul Dooren; Luc Ridder. "An adaptive algorithm for numerical integration over an n-dimensional cube".
  2. ^ Xiaofan Yang; Yuan Tang. "A (4n − 9)/3 diagnosis algorithm on n-dimensional cube network".
  3. ^ Elte, E. L. (1912). "IV, Five dimensional semiregular polytope". The Semiregular Polytopes of the Hyperspaces. Netherlands: University of Groningen. ISBN 141817968X.
  4. ^ Coxeter 1973, pp. 122–123, §7.2 see illustration Fig 7.2C.
  5. ^ Miroslav Vořechovský; Jan Mašek; Jan Eliáš (November 2019). "Distance-based optimal sampling in a hypercube: Analogies to N-body systems". Advances in Engineering Software. 137. 102709. doi:10.1016/j.advengsoft.2019.102709. ISSN 0965-9978.
  6. ^ Coxeter 1973, p. 122, §7·25.
  7. ^ Johnson, Norman W.; Geometries and Transformations, Cambridge University Press, 2018, p.224.
  8. ^ Noga Alon. "Transmitting in the n-dimensional cube".
  9. ^ Coxeter, H. S. M. (1974), Regular complex polytopes, London & New York: Cambridge University Press, p. 180, MR 0370328.

References

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds

Read other articles:

Untuk ajang balap mobil yang merupakan seri utama dari badan ini, lihat Seri IndyCar. INDYCAR, LLCOlahragaBalap mobil roda terbukaYurisdiksiAmerika UtaraSingkatanINDYCARBerdiri1994[1]AfiliasiACCUS-FIATanggal afiliasi1996Kantor pusatIndianapolis, INStaf kunciRoger Penske (Ketua)Mark D. Miles (Pejabat tertinggi Eksklusif)Jay Frye (Presiden)Situs web resmiwww.indycar.com INDYCAR, LLC (Dulunya adalah Indy Racing League) merupakan organisasi penyelenggara balap mobil terbesar di Amerika Se...

 

Siaosi Tupou IIRaja TongaBerkuasa18 Februari 1893 – 5 April 1918Penobatan17 Juli 1893, NukuʻalofaPendahuluSiaosi Tupou IPenerusSālote Tupou IIIInformasi pribadiKelahiran(1874-06-18)18 Juni 1874Neiafu, TongaKematian5 April 1918(1918-04-05) (umur 43)TongaPemakamanMalaʻekulaWangsaTupouAyahTuʻi Pelehake (Fatafehi Toutaitokotaha)IbuʻElisiva Fusipala TaukiʻonetukuPasanganLavinia VeiongoʻAnaseini TakipōAnakSālote Mafile‘o PilolevuʻElisiva Fusipala TaukiʻoneluaʻElisiva Fusipala T...

 

قرية ويندسور الإحداثيات 42°04′30″N 75°38′21″W / 42.075°N 75.6392°W / 42.075; -75.6392  [1] تاريخ التأسيس 1830  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة بروم  خصائص جغرافية  المساحة 3.021802 كيلومتر مربع3.021808 كيلومتر مربع (1 أبريل 2010)  ارتفاع 290...

Chronologies Le marché aux blanchisseuses à Paris. L'Illustration, 1874.Données clés 1871 1872 1873  1874  1875 1876 1877Décennies :1840 1850 1860  1870  1880 1890 1900Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, Répub...

 

Questa voce o sezione sull'argomento criminalità non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento criminalità è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Un viceboss, detto anche sott...

 

Kultur Jaringan Tanaman Kultur jaringan adalah suatu metode untuk mengisolasi bagian dari tanaman seperti sekelompok sel atau jaringan yang ditumbuhkan dalam kondisi aseptik, sehingga bagian tanaman tersebut bisa dapat memperbanyak diri hingga tumbuh menjadi tanaman-tanaman yang baru kembali dengan sifat yang sama.[1] Prinsip Teknik kultur jaringan memanfaatkan prinsip perbanyakan tumbuhan secara vegetatif.[1] Berbeda dari teknik perbanyakan tumbuhan secara konvensional, tekni...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

The Price of Salt Berkas:PriceOfSalt.JPGEdisi pertamaPengarang Patricia Highsmith Claire Morgan (nom de plume) NegaraAmerika SerikatBahasaInggrisGenreNovelDiterbitkan1952PenerbitCoward-McCann, W. W. Norton & Company (2004)Jenis mediaCetak (sampul keras & sampul kertas)Halaman276 hlm (ed. sampul keras)292 hlm (ed. sampul kertas, 2004)ISBNISBN 978-0-393-32599-7 (ed. 2004)OCLC1738553LCCPZ3.H53985 Pr(LCCN 52008026) The Price of Salt (kemudian diterbitkan ulang dengan judul Carol) ada...

 

Voce principale: Spezia Calcio. Spezia CalcioStagione 2002-2003Sport calcio Squadra Spezia Allenatore Antonio Sassarini poi Stefano Cuoghi a seguire Walter Nicoletti Presidente Angelo Zanoli Serie C16º posto nel girone A. Maggiori presenzeCampionato: Cangini, Caverzan, Coti (29) Miglior marcatoreCampionato: Pisano (11) StadioStadio Alberto Picco 2001-2002 2003-2004 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti lo Spezia Calcio nelle competiz...

Nabi Amos, sosok yang menjadi lawan Amazia Amazia (Kitab Amos) adalah nama salah seorang imam dari Betel.[1] Ia merupakan lawan bicara Amos.[1] Amazia hidup pada masa pemerintahan Yerobeam II.[1] Ia merupakan imam yang bekerja untuk pemerintah.[2] Amazia dan Amos Pertemuan Amazia dengan Amos terjadi karena nubuat-nubuat yang Amos beritakan.[3] Amos memberitakan tentang datang penghukuman atas bangsa Israel.[2] Nubuat-nubuat yang diberitakan oleh...

 

Shenzhen Open 2015 Sport Tennis Data 3 gennaio - 10 gennaio Edizione 3ª Superficie Cemento Montepremi 500 000 $ Campioni Singolare Simona Halep Doppio Ljudmyla Kičenok / Nadežda Kičenok 2014 2016 Lo Shenzhen Open 2015 è un torneo di tennis giocato all'aperto sul cemento. È la 3ª edizione dello Shenzhen Open, che fa parte della categoria International nell'ambito del WTA Tour 2015. Si gioca allo Shenzhen Longgang Tennis Centre di Shenzhen in Cina, dal 3 al 10 gennaio 2015. In...

 

The Hakaniemi market square is a popular place to go for a coffee. The Hakaniemi market square in 2008. The Hakaniemi market square in 1913. Russian fruit merchants at the Hakaniemi market square in 1907.[1] The Hakaniemi market square (Finnish: Hakaniementori, Swedish: Hagnäs torg) is a market square located in Hakaniemi, Helsinki, Finland, opened in 1897. Throughout its history, there have been numerous Vappu marches and demonstrations starting from the square, and it is an integra...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

Association football club in England Football clubWantage Town FCFull nameWantage Town Football ClubNickname(s)The FredsFounded1892GroundAlfredian Park, Wantage 51°34′55.7″N 1°25′48.8″W / 51.582139°N 1.430222°W / 51.582139; -1.430222Capacity1,500ManagerDaniel BarryLeagueHellenic League Premier Division2022–23Hellenic League Premier Division, 10th of 20WebsiteClub website Home colours Away colours Wantage Town Football Club is a football club based in Want...

 

Nutritional drinks brand For other uses, see Boost (disambiguation). BoostTypeNutritional drinkManufacturerNestléWebsitewww.boost.com Boost is a nutritional drinks brand made by Swiss company Nestlé. The brand also produces Boost Glucose Control for people with type 2 diabetes.[1] History In 2010, the Federal Trade Commission reached a settlement with Nestlé regarding its claims about Boost Kid Essentials, stating that the product would prevent certain illnesses. As part of the set...

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

Sebagian dari artikel ini (yang berkaitan dengan November 2018) memerlukan pemutakhiran informasi. Harap perbarui artikel dengan menambahkan informasi terbaru yang tersedia. Halaman ini berisi artikel tentang sistem operasi ponsel pintar. Untuk robot yang mirip manusia, lihat Android (robot). AndroidLogo digunakan sejak 2023ScreenshotPerusahaan / pengembangBeragam (kebanyakan Google dan Open Handset Alliance)Diprogram dalamJava (UI), C (Inti), C++ dan lainnyaKeluargaUnix-like (DiubahLinu...

 

River in Utah, United StatesSan Pitch RiverSanPitchThe San Pitch is to the east of the Great Basin section but within the Great Basin (west of the Great Basin Divide).Native nameSahpeech  (Ute)LocationCountryUnited StatesStateUtahPhysical characteristicsLength65 mi (105 km)[1]Basin size480 sq mi (1,200 km2)[2]Basin featuresRiver systemEscalante-Sevier subregion The San Pitch River, extending 65 miles (105 km), is the primary wa...

US Navy unit with aircraft carrier This article is about the formation specific to the United States Navy. For the Royal Navy's formation, see UK Carrier Strike Group. For general doctrine of a fleet centered around an aircraft carrier, see Carrier battle group. Naval units and formations Division Squadron Flotilla Carrier battle group Task force Naval fleet U.S. Navy ships assigned to the USS George Washington Carrier Strike Group sail in formation in the Atlantic Ocean in November 2003. A c...

 

Sachin Tendulkar has scored more centuries in Test cricket than any other player. This article is part of a series aboutSachin Tendulkar Indian International Cricketer International Centuries Career Achievements Honours and Achievements Eponymous stand at Wankhede Stadium Sir Garfield Sobers Trophy 2010 Test Team of the Year 2010 2011 ODI Team of the Year 2004 2007 2008 2010 Wisden Leading Cricketer 1998 2010 Wisden Cricketer of the Year 1997 In Media Ferrari Ki Sawaari Sachin! Tendulkar All...