Regular polygon

Regular polygon
Regular triangle
Regular square
Regular pentagon
Regular hexagon
Regular heptagon
Regular octagon
Regular nonagon
Regular dodecagon
Edges and vertices
Schläfli symbol
Coxeter–Dynkin diagram
Symmetry groupDn, order 2n
Dual polygonSelf-dual
Area
(with side length )
Internal angle
Internal angle sum
Inscribed circle diameter
Circumscribed circle diameter
PropertiesConvex, cyclic, equilateral, isogonal, isotoxal

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex or star. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a straight line), if the edge length is fixed.

General properties

Regular convex and star polygons with 3 to 12 vertices labelled with their Schläfli symbols

These properties apply to all regular polygons, whether convex or star:

  • Together with the property of equal-length sides, this implies that every regular polygon also has an inscribed circle or incircle that is tangent to every side at the midpoint. Thus a regular polygon is a tangential polygon.
  • A regular n-sided polygon can be constructed with compass and straightedge if and only if the odd prime factors of n are distinct Fermat primes. (See constructible polygon.)
  • A regular n-sided polygon can be constructed with origami if and only if for some , where each distinct is a Pierpont prime.[1]

Symmetry

The symmetry group of an n-sided regular polygon is the dihedral group Dn (of order 2n): D2, D3, D4, ... It consists of the rotations in Cn, together with reflection symmetry in n axes that pass through the center. If n is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite sides. If n is odd then all axes pass through a vertex and the midpoint of the opposite side.

Regular convex polygons

All regular simple polygons (a simple polygon is one that does not intersect itself anywhere) are convex. Those having the same number of sides are also similar.

An n-sided convex regular polygon is denoted by its Schläfli symbol . For , we have two degenerate cases:

Monogon {1}
Degenerate in ordinary space. (Most authorities do not regard the monogon as a true polygon, partly because of this, and also because the formulae below do not work, and its structure is not that of any abstract polygon.)
Digon {2}; a "double line segment"
Degenerate in ordinary space. (Some authorities[weasel words] do not regard the digon as a true polygon because of this.)

In certain contexts all the polygons considered will be regular. In such circumstances it is customary to drop the prefix regular. For instance, all the faces of uniform polyhedra must be regular and the faces will be described simply as triangle, square, pentagon, etc.

As a corollary of the annulus chord formula, the area bounded by the circumcircle and incircle of every unit convex regular polygon is π/4

Angles

For a regular convex n-gon, each interior angle has a measure of:

degrees;
radians; or
full turns,

and each exterior angle (i.e., supplementary to the interior angle) has a measure of degrees, with the sum of the exterior angles equal to 360 degrees or 2π radians or one full turn.

As n approaches infinity, the internal angle approaches 180 degrees. For a regular polygon with 10,000 sides (a myriagon) the internal angle is 179.964°. As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle. The value of the internal angle can never become exactly equal to 180°, as the circumference would effectively become a straight line (see apeirogon). For this reason, a circle is not a polygon with an infinite number of sides.

Diagonals

For , the number of diagonals is ; i.e., 0, 2, 5, 9, ..., for a triangle, square, pentagon, hexagon, ... . The diagonals divide the polygon into 1, 4, 11, 24, ... pieces.[a]

For a regular n-gon inscribed in a circle of radius , the product of the distances from a given vertex to all other vertices (including adjacent vertices and vertices connected by a diagonal) equals n.

Points in the plane

For a regular simple n-gon with circumradius R and distances di from an arbitrary point in the plane to the vertices, we have[2]

For higher powers of distances from an arbitrary point in the plane to the vertices of a regular -gon, if

,

then[3]

,

and

,

where is a positive integer less than .

If is the distance from an arbitrary point in the plane to the centroid of a regular -gon with circumradius , then[3]

,

where = 1, 2, …, .

Interior points

For a regular n-gon, the sum of the perpendicular distances from any interior point to the n sides is n times the apothem[4]: p. 72  (the apothem being the distance from the center to any side). This is a generalization of Viviani's theorem for the n = 3 case.[5][6]

Circumradius

Regular pentagon (n = 5) with side s, circumradius R and apothem a
Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6.

The circumradius R from the center of a regular polygon to one of the vertices is related to the side length s or to the apothem a by

For constructible polygons, algebraic expressions for these relationships exist (see Bicentric polygon § Regular polygons).

The sum of the perpendiculars from a regular n-gon's vertices to any line tangent to the circumcircle equals n times the circumradius.[4]: p. 73 

The sum of the squared distances from the vertices of a regular n-gon to any point on its circumcircle equals 2nR2 where R is the circumradius.[4]: p. 73 

The sum of the squared distances from the midpoints of the sides of a regular n-gon to any point on the circumcircle is 2nR21/4ns2, where s is the side length and R is the circumradius.[4]: p. 73 

If are the distances from the vertices of a regular -gon to any point on its circumcircle, then [3]

.

Dissections

Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into or 1/2m(m − 1) parallelograms. These tilings are contained as subsets of vertices, edges and faces in orthogonal projections m-cubes.[7] In particular, this is true for any regular polygon with an even number of sides, in which case the parallelograms are all rhombi. The list OEISA006245 gives the number of solutions for smaller polygons.

Example dissections for select even-sided regular polygons
2m 6 8 10 12 14 16 18 20 24 30 40 50
Image
Rhombs 3 6 10 15 21 28 36 45 66 105 190 300

Area

The area A of a convex regular n-sided polygon having side s, circumradius R, apothem a, and perimeter p is given by[8][9]

For regular polygons with side s = 1, circumradius R = 1, or apothem a = 1, this produces the following table:[b] (Since as , the area when tends to as grows large.)

Number
of sides
Area when side s = 1 Area when circumradius R = 1 Area when apothem a = 1
Exact Approximation Exact Approximation Relative to
circumcircle area
Exact Approximation Relative to
incircle area
n
3 0.433012702 1.299038105 0.4134966714 5.196152424 1.653986686
4 1 1.000000000 2 2.000000000 0.6366197722 4 4.000000000 1.273239544
5 1.720477401 2.377641291 0.7568267288 3.632712640 1.156328347
6 2.598076211 2.598076211 0.8269933428 3.464101616 1.102657791
7 3.633912444 2.736410189 0.8710264157 3.371022333 1.073029735
8 4.828427125 2.828427125 0.9003163160 3.313708500 1.054786175
9 6.181824194 2.892544244 0.9207254290 3.275732109 1.042697914
10 7.694208843 2.938926262 0.9354892840 3.249196963 1.034251515
11 9.365639907 2.973524496 0.9465022440 3.229891423 1.028106371
12 11.19615242 3 3.000000000 0.9549296586 3.215390309 1.023490523
13 13.18576833 3.020700617 0.9615188694 3.204212220 1.019932427
14 15.33450194 3.037186175 0.9667663859 3.195408642 1.017130161
15 [c] 17.64236291 [d] 3.050524822 0.9710122088 [e] 3.188348426 1.014882824
16 [f] 20.10935797 3.061467460 0.9744953584 [g] 3.182597878 1.013052368
17 22.73549190 3.070554163 0.9773877456 3.177850752 1.011541311
18 25.52076819 3.078181290 0.9798155361 3.173885653 1.010279181
19 28.46518943 3.084644958 0.9818729854 3.170539238 1.009213984
20 [h] 31.56875757 [i] 3.090169944 0.9836316430 [j] 3.167688806 1.008306663
100 795.5128988 3.139525977 0.9993421565 3.142626605 1.000329117
1000 79577.20975 3.141571983 0.9999934200 3.141602989 1.000003290
10,000 7957746.893 3.141592448 0.9999999345 3.141592757 1.000000033
1,000,000 79577471545 3.141592654 1.000000000 3.141592654 1.000000000
Comparison of sizes of regular polygons with the same edge length, from three to sixty sides. The size increases without bound as the number of sides approaches infinity.

Of all n-gons with a given perimeter, the one with the largest area is regular.[10]

Constructible polygon

Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides,[11]: p. xi  and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.[11]: pp. 49–50  This led to the question being posed: is it possible to construct all regular n-gons with compass and straightedge? If not, which n-gons are constructible and which are not?

Carl Friedrich Gauss proved the constructibility of the regular 17-gon in 1796. Five years later, he developed the theory of Gaussian periods in his Disquisitiones Arithmeticae. This theory allowed him to formulate a sufficient condition for the constructibility of regular polygons:

A regular n-gon can be constructed with compass and straightedge if n is the product of a power of 2 and any number of distinct Fermat primes (including none).

(A Fermat prime is a prime number of the form ) Gauss stated without proof that this condition was also necessary, but never published his proof. A full proof of necessity was given by Pierre Wantzel in 1837. The result is known as the Gauss–Wantzel theorem.

Equivalently, a regular n-gon is constructible if and only if the cosine of its common angle is a constructible number—that is, can be written in terms of the four basic arithmetic operations and the extraction of square roots.

Regular skew polygons


The cube contains a skew regular hexagon, seen as 6 red edges zig-zagging between two planes perpendicular to the cube's diagonal axis.

The zig-zagging side edges of a n-antiprism represent a regular skew 2n-gon, as shown in this 17-gonal antiprism.

A regular skew polygon in 3-space can be seen as nonplanar paths zig-zagging between two parallel planes, defined as the side-edges of a uniform antiprism. All edges and internal angles are equal.


The Platonic solids (the tetrahedron, cube, octahedron, dodecahedron, and icosahedron) have Petrie polygons, seen in red here, with sides 4, 6, 6, 10, and 10 respectively.

More generally regular skew polygons can be defined in n-space. Examples include the Petrie polygons, polygonal paths of edges that divide a regular polytope into two halves, and seen as a regular polygon in orthogonal projection.

In the infinite limit regular skew polygons become skew apeirogons.

Regular star polygons

Regular star polygons
2 < 2q < p, gcd(p, q) = 1
Schläfli symbol{p/q}
Vertices and Edgesp
Densityq
Coxeter diagram
Symmetry groupDihedral (Dp)
Dual polygonSelf-dual
Internal angle
(degrees)
[12]

A non-convex regular polygon is a regular star polygon. The most common example is the pentagram, which has the same vertices as a pentagon, but connects alternating vertices.

For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}. If m is 2, for example, then every second point is joined. If m is 3, then every third point is joined. The boundary of the polygon winds around the center m times.

The (non-degenerate) regular stars of up to 12 sides are:

m and n must be coprime, or the figure will degenerate.

The degenerate regular stars of up to 12 sides are:

  • Tetragon – {4/2}
  • Hexagons – {6/2}, {6/3}
  • Octagons – {8/2}, {8/4}
  • Enneagon – {9/3}
  • Decagons – {10/2}, {10/4}, and {10/5}
  • Dodecagons – {12/2}, {12/3}, {12/4}, and {12/6}
Two interpretations of {6/2}
Grünbaum
{6/2} or 2{3}[13]
Coxeter
2{3} or {6}[2{3}]{6}
Doubly-wound hexagon Hexagram as a compound
of two triangles

Depending on the precise derivation of the Schläfli symbol, opinions differ as to the nature of the degenerate figure. For example, {6/2} may be treated in either of two ways:

  • For much of the 20th century (see for example Coxeter (1948)), we have commonly taken the /2 to indicate joining each vertex of a convex {6} to its near neighbors two steps away, to obtain the regular compound of two triangles, or hexagram.
    Coxeter clarifies this regular compound with a notation {kp}[k{p}]{kp} for the compound {p/k}, so the hexagram is represented as {6}[2{3}]{6}.[14] More compactly Coxeter also writes 2{n/2}, like 2{3} for a hexagram as compound as alternations of regular even-sided polygons, with italics on the leading factor to differentiate it from the coinciding interpretation.[15]
  • Many modern geometers, such as Grünbaum (2003),[13] regard this as incorrect. They take the /2 to indicate moving two places around the {6} at each step, obtaining a "double-wound" triangle that has two vertices superimposed at each corner point and two edges along each line segment. Not only does this fit in better with modern theories of abstract polytopes, but it also more closely copies the way in which Poinsot (1809) created his star polygons – by taking a single length of wire and bending it at successive points through the same angle until the figure closed.

Duality of regular polygons

All regular polygons are self-dual to congruency, and for odd n they are self-dual to identity.

In addition, the regular star figures (compounds), being composed of regular polygons, are also self-dual.

Regular polygons as faces of polyhedra

A uniform polyhedron has regular polygons as faces, such that for every two vertices there is an isometry mapping one into the other (just as there is for a regular polygon).

A quasiregular polyhedron is a uniform polyhedron which has just two kinds of face alternating around each vertex.

A regular polyhedron is a uniform polyhedron which has just one kind of face.

The remaining (non-uniform) convex polyhedra with regular faces are known as the Johnson solids.

A polyhedron having regular triangles as faces is called a deltahedron.

See also

Notes

  1. ^ OEISA007678
  2. ^ Results for R = 1 and a = 1 obtained with Maple, using function definition:
    f := proc (n)
    options operator, arrow;
    [
     [convert(1/4*n*cot(Pi/n), radical), convert(1/4*n*cot(Pi/n), float)],
     [convert(1/2*n*sin(2*Pi/n), radical), convert(1/2*n*sin(2*Pi/n), float), convert(1/2*n*sin(2*Pi/n)/Pi, float)],
     [convert(n*tan(Pi/n), radical), convert(n*tan(Pi/n), float), convert(n*tan(Pi/n)/Pi, float)]
    ]
    end proc
    
    The expressions for n = 16 are obtained by twice applying the tangent half-angle formula to tan(π/4)
  3. ^
  4. ^
  5. ^
  6. ^
  7. ^
  8. ^
  9. ^
  10. ^

References

  1. ^ Hwa, Young Lee (2017). Origami-Constructible Numbers (PDF) (MA thesis). University of Georgia. pp. 55–59.
  2. ^ Park, Poo-Sung. "Regular polytope distances", Forum Geometricorum 16, 2016, 227-232. http://forumgeom.fau.edu/FG2016volume16/FG201627.pdf
  3. ^ a b c Meskhishvili, Mamuka (2020). "Cyclic Averages of Regular Polygons and Platonic Solids". Communications in Mathematics and Applications. 11: 335–355.
  4. ^ a b c d Johnson, Roger A., Advanced Euclidean Geometry, Dover Publ., 2007 (orig. 1929).
  5. ^ Pickover, Clifford A, The Math Book, Sterling, 2009: p. 150
  6. ^ Chen, Zhibo, and Liang, Tian. "The converse of Viviani's theorem", The College Mathematics Journal 37(5), 2006, pp. 390–391.
  7. ^ Coxeter, Mathematical recreations and Essays, Thirteenth edition, p.141
  8. ^ "Math Open Reference". Retrieved 4 Feb 2014.
  9. ^ "Mathwords".
  10. ^ Chakerian, G.D. "A Distorted View of Geometry." Ch. 7 in Mathematical Plums (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.
  11. ^ a b Bold, Benjamin. Famous Problems of Geometry and How to Solve Them, Dover Publications, 1982 (orig. 1969).
  12. ^ Kappraff, Jay (2002). Beyond measure: a guided tour through nature, myth, and number. World Scientific. p. 258. ISBN 978-981-02-4702-7.
  13. ^ a b Are Your Polyhedra the Same as My Polyhedra? Branko Grünbaum (2003), Fig. 3
  14. ^ Regular polytopes, p.95
  15. ^ Coxeter, The Densities of the Regular Polytopes II, 1932, p.53

Further reading

  • Lee, Hwa Young; "Origami-Constructible Numbers".
  • Coxeter, H.S.M. (1948). Regular Polytopes. Methuen and Co.
  • Grünbaum, B.; Are your polyhedra the same as my polyhedra?, Discrete and comput. geom: the Goodman-Pollack festschrift, Ed. Aronov et al., Springer (2003), pp. 461–488.
  • Poinsot, L.; Memoire sur les polygones et polyèdres. J. de l'École Polytechnique 9 (1810), pp. 16–48.
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds

Read other articles:

TermodinamikaMesin panas klasik Carnot Cabang Klasik Statistik Kimia Termodinamika kuantum Kesetimbangan / Tak setimbang Hukum Awal Pertama Kedua Ketiga Sistem Keadaan Persamaan keadaan Gas ideal Gas nyata Wujud zat Kesetimbangan Volume kontrol Instrumen Proses Isobarik Isokorik Isotermis Adiabatik Isentropik Isentalpik Quasistatik Politropik Ekspansi bebas Reversibel Ireversibel Endoreversibilitas Siklus Mesin kalor Pompa kalor Efisiensi termal Properti sistemCatatan: Variabel konjugat ...

 

 

2012 2022 Élections législatives de 2017 dans l'Hérault 9 sièges de députés à l'Assemblée nationale 11 et 18 juin 2017 Type d’élection Élections législatives Campagne 22 mai au 10 juin12 juin au 16 juin Corps électoral et résultats Population 1 144 892 Inscrits 800 470 Votants au 1er tour 387 288   48,38 %  11,4 Votes exprimés au 1er tour 378 035 Votes blancs au 1er tour 6 672 Votes nuls au 1er tour 2 581 Votants au 2d ...

 

 

British aircraft manufacturer during the 1930s Dart Aircraft Limited was a British aircraft manufacturer during the 1930s. Its facilities were located at 29 High Street North, Dunstable, Bedfordshire. The 1937-built Dart Kitten II visiting the Kemble (Glos) air rally in May 2009 History The company was founded by Alfred R.Weyl and Erich P.Zander,[1] as Zander and Weyl Limited at Dunstable. In March 1936 the company name was changed to Dart Aircraft Limited. The company began by constr...

Australian sporting goods chain owned by Super Retail Group This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rebel company – news · newspapers · books · scholar · JSTOR (June 2016) (Learn how and when to remove this message) For the NZ chain, see Briscoes Group. RebelHeadquarters in Rhodes, New South Wal...

 

 

Questa voce o sezione deve essere rivista e aggiornata appena possibile. Sembra infatti che questa voce contenga informazioni superate e/o obsolete. Se puoi, contribuisci ad aggiornarla. La Lista rossa dell'Unione Internazionale per la Conservazione della Natura (in inglese: IUCN Red List of Threatened Species, IUCN Red List o Red Data List) è stata istituita nel 1964 e rappresenta il più ampio database di informazioni sullo stato di conservazione delle specie animali e vegetali di tutto i...

 

 

XXV legislaturaInaugurazione della legislaturaStato Italia MonarcaVittorio Emanuele III di Savoia Inizio1º dicembre 1919 Fine7 aprile 1921 SessioniSessioneUnica CameraElezioni16 novembre 1919 (Dettagli) PresidenteVittorio Emanuele OrlandoEnrico De Nicola DeputatiElenco SenatoPresidenteTommaso Tittoni SenatoriElenco Capi di governoGoverniNitti I (1919-1920)Nitti II (1920)Giolitti V (1920-1921) XXIV legislatura XXVI legislatura Modifica dati su Wikidata · Manuale La XXV legislatura ...

Lihat pula: Burung Api (mitologi) Patung Fenghuang di kota Nanning provinsi Guangxi Bagian dari seri mengenaiKepercayaan tradisional Tionghoa Konsep Taidi 太帝 Tian 天—Shangdi 上帝 Qi 气 Shen 神 Ling 灵 Xian ling 显灵 Yinyang 阴阳 Hundun Naga 龙 dan Feniks 凤凰 Mingyun 命运 Yuanfen 缘分 Baoying 报应 Wu 悟 Teori Teologi Tionghoa Dewa dan keabadian Tionghoa Pangu Fuxi Nüwa Longwang Shennong Huangdi Guan Yu Cai Shen Mazu Dewa-dewi lainnya Mitologi Tiongkok Mitos pencipta...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2019) كأس الخليج للأندية 2002 تفاصيل الموسم كأس الخليج للأندية  النسخة 19  المنظم الاتحاد الآسيوي لكرة القدم...

 

 

Genus of moths Cossus Cossus cossus Scientific classification Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Lepidoptera Family: Cossidae Genus: CossusFabricius, 1793 Synonyms Teredo Hübner, 1806 Lyonetus Rafinesque, 1815 Trypanus Rambur, 1866 Caseus Castelnau, 1840 Cassus Dyar, 1905 Cussus Milyanovsky, 1964 Cossus is a genus of moths in the family Cossidae described by Johan Christian Fabricius in 1793. Species Cossus afghanistana Daniel, 1953 Cossus bohatschi Püngeler, 1898 Co...

Pour les articles homonymes, voir Hernandez. Ne doit pas être confondu avec l'acteur Théo Fernandez. Théo Hernandez Théo Hernandez avec l'AC Milan en 2022. Situation actuelle Équipe AC Milan Numéro 19 Biographie Nom Théo François Bernard Hernandez Nationalité Française Naissance 6 octobre 1997 (26 ans) Marseille (France) Taille 1,84 m (6′ 0″) Période pro. Depuis 2015 Poste Latéral gauche Pied fort Gauche Parcours junior Années Club 2006-2007 CF Rayo Majadahond...

 

 

  关于与「內閣總理大臣」標題相近或相同的条目页,請見「內閣總理大臣 (消歧義)」。 日本國內閣總理大臣內閣總理大臣紋章現任岸田文雄自2021年10月4日在任尊称總理、總理大臣、首相、阁下官邸總理大臣官邸提名者國會全體議員選出任命者天皇任期四年,無連任限制[註 1]設立法源日本國憲法先前职位太政大臣(太政官)首任伊藤博文设立1885年12月22日,...

 

 

100 مجال ثقة للمتوسط الحسابي لمجتمع إحصائي، هذه المجالات محسوبة من 100 عينة عشوائية. أيضا كل من هذه المجالات محسوب بمستوى ثقة قدره 95%. فقط 94 من هذه المجالات يحتوي على القيمة الحقيقية للمتوسط الحسابي للمجتمع μ = 5، بينما 6 مجالات لا تحتوي على القيمة الحقيقية! في الإحصاء، مجال الثق...

Questa voce sugli argomenti chiese della Germania e architetture di Berlino è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Sankt MatthäuskircheSt. MatthäuskircheStato Germania LocalitàBerlino IndirizzoMatthäikirchplatz, Berlin Coordinate52°30′28″N 13°22′02″E52°30′28″N, 13°22′02″E Religioneevangelica DiocesiChiesa regionale di Berlino, Brandeburgo, Slesia e Alta Lusazia ArchitettoFriedrich August StülerHerbert Wentzel Sti...

 

 

Halaman ini berisi artikel tentang film Laurel dan Hardy. Untuk film lain dengan judul yang sama, lihat Sailor Beware. Sailors, Beware!Poster layar lebarSutradaraFred Guiol Hal YatesProduserHal RoachDitulis olehHal Roach H.M. Walker (titel)PemeranStan Laurel Oliver HardyDistributorPathé ExchangeTanggal rilis 25 September 1927 (1927-09-25) Durasi19' 51NegaraAmerika SerikatBahasaAntarjudul InggrisAnggaran Poster Alternatif Sailors, Beware! adalah sebuah film pendek komedi bisu yang dibint...

 

 

Artikel ini tentang topan 1989; untuk angin ribut dengan nama yang sama, lihat Angin Tropis Gay. Taifun/Angin Ribut Siklonik GaySiklon TropisTopan Gay pada puncaknya tak lama sebelum longsornya di IndiaTerbentuk pada1 November 1989Mereda pada10 November 1989 Kecepatan anginmaksimal3 menit: 230 km/jam 1 menit: 260 km/jam Tekanan minimal930 hPa (mbar) Korban jiwa902 tewas, 134 menghilangKerusakan521 juta (USD 1989Basin=NIO)Area terdampakThailand, IndiaBagian dari Musim topan Pasifik 1989Musim s...

Eugenio Beltrami Senatore del Regno d'ItaliaDurata mandato4 giugno 1899 –18 febbraio 1900 LegislaturaXX Tipo nominaCategoria: 18 Sito istituzionale Dati generaliTitolo di studioDiploma di maturità ProfessioneDocente universitario Eugenio Beltrami (Cremona, 16 novembre 1835 – Roma, 18 febbraio 1900) è stato un matematico e fisico italiano, noto soprattutto per i suoi contributi alla geometria non euclidea e all'elettromagnetismo. Indice 1 Biografia 1.1 Primi studi...

 

 

جزء من سلسلة مقالات حولالثابت الرياضي π الاستعمالات مساحة القرص المحيط صيغ أخرى الخواص لا نسبية عدد متسام القيمة تقريبات تذكّر أقل من 22/7 أشخاص أرشميدس ليو هوي زو تشونغزي أريابهاتا مادهافا السنغماراي لودولف فان ساولن سيكي تاكاكازو تاكيبي كينكو ويليام جونز جون ماكن ويليام ...

 

 

President of the University of Tokyo Teruo Fujii藤井 輝夫31st President of the University of TokyoIncumbentAssumed office April 2021Preceded byMakoto GonokamiDirector General of the Institute of Industrial ScienceIn office2015–2018 Personal detailsBorn (1964-04-05) April 5, 1964 (age 60)Zürich, SwitzerlandNationality JapaneseResidence(s)Tokyo, JapanAlma materUniversity of TokyoOccupationUniversity professor Researcher Teruo Fujii (藤井 輝夫, Fujii Teruo, born 5 April ...

  关于其他名为「马耀南」的人物,请见「马耀南」。 馬耀南(1884年—20世纪?),原名继祖,宁夏固原人。中華民國大陸時期政治人物,監察委員。 甘肅省監察委員 生平 1884年生,为清代回族将领马进祥之孙[1]。早年加入中国同盟会。曾任甘肃省临时议会议员,甘肃回教教育促进会会长,甘凉道尹,安徽省政府秘书等职。1938年8月12日,任监察院监察委员。194...

 

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2008 IAAF World Indoor Championships – Women's 1500 metres – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this message) 2008 IAAF WorldIndoor ChampionshipsTrack events60 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen3000 mmenwomen60...