Ptolemy's inequality

Four points and their six distances. The points are not co-circular, so Ptolemy's inequality is strict for these points.

In Euclidean geometry, Ptolemy's inequality relates the six distances determined by four points in the plane or in a higher-dimensional space. It states that, for any four points A, B, C, and D, the following inequality holds:

It is named after the Greek astronomer and mathematician Ptolemy.

The four points can be ordered in any of three distinct ways (counting reversals as not distinct) to form three different quadrilaterals, for each of which the sum of the products of opposite sides is at least as large as the product of the diagonals. Thus, the three product terms in the inequality can be additively permuted to put any one of them on the right side of the inequality, so the three products of opposite sides or of diagonals of any one of the quadrilaterals must obey the triangle inequality.[1]

As a special case, Ptolemy's theorem states that the inequality becomes an equality when the four points lie in cyclic order on a circle. The other case of equality occurs when the four points are collinear in order. The inequality does not generalize from Euclidean spaces to arbitrary metric spaces. The spaces where it remains valid are called the Ptolemaic spaces; they include the inner product spaces, Hadamard spaces, and shortest path distances on Ptolemaic graphs.

Assumptions and derivation

Ptolemy's inequality is often stated for a special case, in which the four points are the vertices of a convex quadrilateral, given in cyclic order.[2][3] However, the theorem applies more generally to any four points; it is not required that the quadrilateral they form be convex, simple, or even planar.

For points in the plane, Ptolemy's inequality can be derived from the triangle inequality by an inversion centered at one of the four points.[4][5] Alternatively, it can be derived by interpreting the four points as complex numbers, using the complex number identity:

to construct a triangle whose side lengths are the products of sides of the given quadrilateral, and applying the triangle inequality to this triangle.[6] One can also view the points as belonging to the complex projective line, express the inequality in the form that the absolute values of two cross-ratios of the points sum to at least one, and deduce this from the fact that the cross-ratios themselves add to exactly one.[7]

A proof of the inequality for points in three-dimensional space can be reduced to the planar case, by observing that for any non-planar quadrilateral, it is possible to rotate one of the points around the diagonal until the quadrilateral becomes planar, increasing the other diagonal's length and keeping the other five distances constant.[6] In spaces of higher dimension than three, any four points lie in a three-dimensional subspace, and the same three-dimensional proof can be used.

Four concyclic points

For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem:

In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may be derived) also becomes an equality.[5] For any other four points, Ptolemy's inequality is strict.

In three dimensions

Four non-coplanar points A, B, C, and D in 3D form a tetrahedron. In this case, the strict inequality holds: .[8]

In general metric spaces

A cycle graph in which the distances disobey Ptolemy's inequality

Ptolemy's inequality holds more generally in any inner product space,[1][9] and whenever it is true for a real normed vector space, that space must be an inner product space.[9][10]

For other types of metric space, the inequality may or may not be valid. A space in which it holds is called Ptolemaic. For instance, consider the four-vertex cycle graph, shown in the figure, with all edge lengths equal to 1. The sum of the products of opposite sides is 2. However, diagonally opposite vertices are at distance 2 from each other, so the product of the diagonals is 4, bigger than the sum of products of sides. Therefore, the shortest path distances in this graph are not Ptolemaic. The graphs in which the distances obey Ptolemy's inequality are called the Ptolemaic graphs and have a restricted structure compared to arbitrary graphs; in particular, they disallow induced cycles of length greater than three, such as the one shown.[11]

The Ptolemaic spaces include all CAT(0) spaces and in particular all Hadamard spaces. If a complete Riemannian manifold is Ptolemaic, it is necessarily a Hadamard space.[12]

Inner product spaces

Suppose that is a norm on a vector space Then this norm satisfies Ptolemy's inequality: if and only if there exists an inner product on such that for all vectors [13] Another necessary and sufficient condition for there to exist such an inner product is for the norm to satisfy the parallelogram law: If this is the case then this inner product will be unique and it can be defined in terms of the norm by using the polarization identity.

See also

References

  1. ^ a b Schoenberg, I. J. (1940), "On metric arcs of vanishing Menger curvature", Annals of Mathematics, Second Series, 41 (4): 715–726, doi:10.2307/1968849, JSTOR 1968849, MR 0002903.
  2. ^ Steele, J. Michael (2004), "Exercise 4.6 (Ptolemy's Inequality)", The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities, MAA problem books, Cambridge University Press, p. 69, ISBN 9780521546775.
  3. ^ Alsina, Claudi; Nelsen, Roger B. (2009), "6.1 Ptolemy's inequality", When Less is More: Visualizing Basic Inequalities, Dolciani Mathematical Expositions, vol. 36, Mathematical Association of America, pp. 82–83, ISBN 9780883853429.
  4. ^ Apostol (1967) attributes the inversion-based proof to textbooks by R. A. Johnson (1929) and Howard Eves (1963).
  5. ^ a b Stankova, Zvezdelina; Rike, Tom, eds. (2008), "Problem 7 (Ptolemy's Inequality)", A Decade of the Berkeley Math Circle: The American Experience, MSRI Mathematical Circles Library, vol. 1, American Mathematical Society, p. 18, ISBN 9780821846834.
  6. ^ a b Apostol 1967.
  7. ^ Silvester, John R. (2001), "Proposition 9.10 (Ptolemy's theorem)", Geometry: Ancient and Modern, Oxford University Press, p. 229, ISBN 9780198508250.
  8. ^ Zhu, Hanlin (1984). "68.25 A Tetrahedron Inequality". The Mathematical Gazette. 68 (445): 200–202. doi:10.2307/3616345. ISSN 0025-5572. JSTOR 3616345.
  9. ^ a b Giles, J. R. (2000), "Exercise 12", Introduction to the Analysis of Normed Linear Spaces, Australian Mathematical Society lecture series, vol. 13, Cambridge University Press, p. 47, ISBN 9780521653756.
  10. ^ Schoenberg, I. J. (1952), "A remark on M. M. Day's characterization of inner-product spaces and a conjecture of L. M. Blumenthal", Proceedings of the American Mathematical Society, 3 (6): 961–964, doi:10.2307/2031742, JSTOR 2031742, MR 0052035.
  11. ^ Howorka, Edward (1981), "A characterization of Ptolemaic graphs", Journal of Graph Theory, 5 (3): 323–331, doi:10.1002/jgt.3190050314, MR 0625074.
  12. ^ Buckley, S. M.; Falk, K.; Wraith, D. J. (2009), "Ptolemaic spaces and CAT(0)", Glasgow Mathematical Journal, 51 (2): 301–314, doi:10.1017/S0017089509004984, MR 2500753.
  13. ^ Apostol, Tom M. (1967). "Ptolemy's Inequality and the Chordal Metric". Mathematics Magazine. 40 (5): 233–235. doi:10.2307/2688275. JSTOR 2688275. MR 0225213.

Read other articles:

Breakdown of red blood cells Hemolyses of Streptococcus spp.(left) α-hemolysis (S. mitis);(middle) β-hemolysis (S. pyogenes);(right) γ- hemolysis (= non-hemolytic, S. salivarius) Hemolysis (from Greek αιμόλυση, meaning 'blood breakdown') is the breakdown of red blood cells. The ability of bacterial colonies to induce hemolysis when grown on blood agar is used to classify certain microorganisms. This is particularly useful in classifying streptococcal species. A substance that cause...

Luiza en La Route du Rock 2007, en Saint-Malo. Luiza da Silva e Sá (São Paulo, 29 de marzo de 1983 (40 años)) es una de las guitarristas y bateristas de la banda brasileña de indie electrónico, Cansei de Ser Sexy. Además de tocar en la banda, estudia Artes en la universidad y está muy interesada en la astrología. A veces hace actos de pinchadiscos en clubs São Paulo junto a su compañera de banda Ana Rezende, como el dúo MeuKu ( que significa MiCulo en español). Su estilo de c...

Clifton Villa CliftonUbicación en el condado de Iroquois en Illinois Ubicación de Illinois en EE. UU.Coordenadas 40°56′07″N 87°56′04″O / 40.9353, -87.9344Entidad Villa • País  Estados Unidos • Estado  Illinois • Condado IroquoisSuperficie   • Total 2.28 km² • Tierra 2.28 km² • Agua (0%) 0 km²Altitud   • Media 204 m s. n. m.Población (2010)   • Total 1468 hab. �...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) لينكولن ديكسون (بالإنجليزية: Lincoln Dixon)‏    معلومات شخصية الميلاد 9 فبراير 1860  فيرنون (إنديانا)  تاريخ الوفاة 16 سبتمبر 1932 (72 سنة)   مواطنة الولايات الم�...

City in Indiana, United StatesJeffersonville, IndianaCityCity of JeffersonvilleSkyline of JeffersonvilleNickname: JeffLocation of Jeffersonville in Clark County, IndianaCoordinates: 38°17′44″N 85°43′53″W / 38.29556°N 85.73139°W / 38.29556; -85.73139CountryUnited StatesStateIndianaCountyClarkEstablished1801Government • MayorMike Moore (R)Area[1] • Total34.35 sq mi (88.97 km2) • Land34.08 sq...

Santa Cruz Mountains AVAWine regionTypeAmerican Viticultural AreaYear established1981[1]CountryUnited StatesPart ofCaliforniaSub-regionsBen Lomond Mountain AVATotal areaapp. 322,000 acresSize of planted vineyards1,500 acres (6 km2)[2]Grapes producedCabernet Franc, Cabernet Sauvignon, Carignane, Chardonnay, Dolcetto, Grenache, Malbec, Malvasia, Merlot, Mondeuse, Mourvedre, Nebbiolo, Petit Verdot, Petite Sirah, Pinot noir, Sangiovese, Sauvignon blanc, Syrah, Viognier, Zinfa...

CeyzérieuCeyzérieu Lokasi di Region Auvergne-Rhône-Alpes Ceyzérieu Koordinat: 45°50′07″N 5°43′36″E / 45.8353°N 5.7267°E / 45.8353; 5.7267NegaraPrancisRegionAuvergne-Rhône-AlpesDepartemenAinArondisemenBelleyKantonVirieu-le-GrandPemerintahan • Wali kota (2008–2014) Bernard ReuterLuas • Land119,72 km2 (761 sq mi) • Populasi2893 • Kepadatan Populasi20,45/km2 (1,2/sq mi)Kode INSEE/pos0107...

非裔俄羅斯人Афро-РоссиянеAfro-Russian彼得大帝與他的黑奴。德國水彩畫,約1707。總人口100,000-150,000 (2019)[1]分佈地區莫斯科, 聖彼得堡, 頓河畔羅斯托夫, 奧廖爾, 利佩茨克, 阿斯特拉罕語言俄語 · 阿布哈茲語 · 尼日-剛果語系 · 尼羅-撒哈拉語系 · 英語 · 法語宗教信仰基督宗教, 伊斯蘭教 非裔俄羅斯人,是指在俄羅斯人生活的黑人�...

1963 American filmHallelujah the HillsDirected byAdolfas MekasWritten byAdolfas MekasProduced byDavid C. StoneStarringPeter H. BeardMartin GreenbaumSheila FinnPeggy SteffansJerome RaphaelBlanche DeeJerome HillTaylor MeadEmshCinematographyEd EmshwillerEdited byAdolfas MekasMusic byMeyer KupfermanProductioncompanyVermont ProductionsRelease date1963Running time82 minutesCountryUnited StatesLanguageEnglish Hallelujah the Hills (1963) was written, directed and edited by Adolfas Mekas. The picture ...

Settlement in Warmian-Masurian Voivodeship, PolandBrusiny MałeSettlementBrusiny MałeCoordinates: 53°42′23″N 19°26′55″E / 53.70639°N 19.44861°E / 53.70639; 19.44861Country PolandVoivodeshipWarmian-MasurianCountyIławaGminaSuszTime zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST) Brusiny Małe [bruˈɕinɨ ˈmawɛ] is a settlement in the administrative district of Gmina Susz, within Iława County, Warmian-Masurian Voivodeship, in northern Poland....

Policía Nacional de Guinea Ecuatorial Activa 1968País  Guinea EcuatorialRama/s Fuerzas y Cuerpos de Seguridad del EstadoFunción Velar por la seguridad interna de Guinea EcuatorialAcuartelamiento NacionalAlto mandoComandante 3.º Nicolás Obama Nchama[editar datos en Wikidata] La Polícia Nacional de Guinea Ecuatorial[1]​[2]​ es un cuerpo armado del estado ecuatoguineano, de carácter permanente, de naturaleza civil, encargado de mantener y garantizar el orden pú...

For other uses, see Megara (disambiguation). Place in GreeceMegara ΜέγαραMegaraLocation within the region Coordinates: 37°59′47″N 23°20′40″E / 37.99639°N 23.34444°E / 37.99639; 23.34444CountryGreeceAdministrative regionAtticaRegional unitWest AtticaGovernment • MayorGrigorios StamoulisArea • Municipality330.1 km2 (127.5 sq mi) • Municipal unit322.2 km2 (124.4 sq mi)Elevation4 m (13...

Park in San Francisco, California, US Huntington ParkHuntington Park in 2015, looking northeastTypeMunicipalLocationSan Francisco, CaliforniaCoordinates37°47′32″N 122°24′44″W / 37.7921779°N 122.412117°W / 37.7921779; -122.412117Area1.3 acres (0.53 ha)[1]Created1915[1]Operated bySan Francisco Recreation & Parks Department Collis P. Huntington Park is a 1.3-acre (0.53 ha) park in the Nob Hill neighborhood of San Francisco, C...

Finnish theatre director and agronomist (1917–2004) Vivica BandlerVivica Bandler, 1997BornVivica Aina Fanny von Frenckell(1917-02-05)5 February 1917[1]Helsinki, FinlandDied30 June 2004(2004-06-30) (aged 87)Helsinki, FinlandSpouseKurt BandlerBandler in 1949 Vivica Aina Fanny Bandler (5 February 1917 – 30 July 2004) was a Finnish-Swedish theatre director and agronomist.[2] She bought a theatre (Lilla Teatern) in Helsinki in 1955 and is credited for popularizing avant-ga...

1979 studio album by Julio IglesiasÀ vous les femmesStudio album by Julio IglesiasReleased1979GenreRock, Latin, PopLabelCBSProducerRamón Arcusa À vous les femmes is a 1979 album by Julio Iglesias.[1] Track listing No.TitleWriter(s)Length1.Pauvres Diables (Pobre Diablo)Julio Iglesias2:582.L'amour c'est quoi (Preguntale)Julio Iglesias4:493.Les Traditions (La nostra buona educazione)Julio Iglesias3:314.Je n'ai pas changé (No vengo ni voy)Julio Iglesias3:295.Moi je t'aime (Sum...

Si dà il nome di scienza goethiana all'approccio adottato da Goethe nello studio della natura, e da lui utilizzato nella stesura dei suoi saggi scientifici, i più noti dei quali furono la Metamorfosi delle piante e la Teoria dei colori. Oltre che poeta e scrittore di romanzi, infatti, Goethe era animato da profondi interessi scientifici in diversi campi, fra cui la morfologia, la botanica, la zoologia, la mineralogia e la meteorologia, pervenendo anche a scoperte anatomiche di una certa ril...

Acne focused skincare products This article's lead section may be too long. Please read the length guidelines and help move details into the article's body. (February 2022) ProactivProduct typeSkincareOwnerGuthy-Renker Galderma[1]CountryUnited StatesIntroducedOctober 1995; 28 years ago (1995-10)MarketsAustralasia, Europe, North America, ScandinaviaPrevious ownersKatie RodanKathy FieldsAmbassador(s)Justin BieberSean CombsAvril LavigneJessica SimpsonWebsiteproacti...

This article is about the nineteenth century Confederate officer. For the twentieth century U.S. diplomat, see John Hubert Kelly. For other people with this name, see John Kelly. John Herbert KellyJohn H. Kelly, Brigadier General in the Confederate ArmyNickname(s)The Boy General of the ConfederacyBorn(1840-03-31)March 31, 1840Carrollton, AlabamaDiedSeptember 4, 1864(1864-09-04) (aged 24)Franklin, TennesseePlace of burialMagnolia Cemetery, Mobile, AlabamaAllegiance Confederate States...

One DayPoster teatrikalNama lainHangul어느날 Alih Aksara yang DisempurnakanEoneunalMcCune–Reischauerŏnŭnal SutradaraLee Yoon-kiProduserLee Dong-hoKim Dong-hyunDitulis olehKim Sun-ahPemeranKim Nam-gilChun Woo-heePerusahaanproduksiInvent Stone CorpOpus PicturesDistributorOpus PicturesCGV ArthouseTanggal rilis 5 April 2017 (2017-04-05) Durasi114 menitNegaraKorea SelatanBahasaKoreaPendapatankotorUS$1,6 juta[1] One Day (Hangul: 어느날; RR: Eoneuna...

Tanzanian actor Joseph MarwaBornJoseph Marwa (1999-04-16) 16 April 1999 (age 25)Musoma Rural District, Mara Region, TanzaniaOther namesJosephs QuartzyOccupation(s)ActorauthorYears active2015–presentHeight1.64 m (5 ft 5 in) Joseph Marwa also recognized by his pen name Josephs Quartzy is a Tanzanian television actor, novelist and a former lead vocalist for the music duo The Eastern Bandits.[1] He is best known for playing Nhwale in the romance fiction fil...