Circles of Apollonius

The circles of Apollonius are any of several sets of circles associated with Apollonius of Perga, a renowned Greek geometer. Most of these circles are found in planar Euclidean geometry, but analogs have been defined on other surfaces; for example, counterparts on the surface of a sphere can be defined through stereographic projection.

The main uses of this term are fivefold:

  1. Apollonius showed that a circle can be defined as the set of points in a plane that have a specified ratio of distances to two fixed points, known as foci. This Apollonian circle is the basis of the Apollonius pursuit problem. It is a particular case of the first family described in #2.
  2. The Apollonian circles are two families of mutually orthogonal circles. The first family consists of the circles with all possible distance ratios to two fixed foci (the same circles as in #1), whereas the second family consists of all possible circles that pass through both foci. These circles form the basis of bipolar coordinates.
  3. The circles of Apollonius of a triangle are three circles, each of which passes through one vertex of the triangle and maintains a constant ratio of distances to the other two. The isodynamic points and Lemoine line of a triangle can be solved using these circles of Apollonius.
  4. Apollonius' problem is to construct circles that are simultaneously tangent to three specified circles. The solutions to this problem are sometimes called the circles of Apollonius.
  5. The Apollonian gasket—one of the first fractals ever described—is a set of mutually tangent circles, formed by solving Apollonius' problem iteratively.

Apollonius' definition of a circle

Figure 1. Apollonius' definition of a circle.

A circle is usually defined as the set of points P at a given distance r (the circle's radius) from a given point (the circle's center). However, there are other, equivalent definitions of a circle. Apollonius discovered that a circle could be defined as the set of points P that have a given ratio of distances k = d1/d2 to two given points (labeled A and B in Figure 1). These two points are sometimes called the foci.

Proof using vectors in Euclidean spaces

Let d1, d2 be non-equal positive real numbers. Let C be the internal division point of AB in the ratio d1 : d2 and D the external division point of AB in the same ratio, d1 : d2.

Then,

Therefore, the point P is on the circle which has the diameter CD.

Proof using the angle bisector theorem

Proof of Apollonius' definition of a circle

First consider the point on the line segment between and , satisfying the ratio. By the definition and from the converse of the angle bisector theorem, the angles and are equal.

Next take the other point on the extended line that satisfies the ratio. So Also take some other point anywhere on the extended line . Again by the converse of the angle bisector theorem, the line bisects the exterior angle . Hence, and are equal and . Hence by Thales's theorem lies on the circle which has as a diameter.

Apollonius pursuit problem

The Apollonius pursuit problem is one of finding whether a ship leaving from one point A at speed vA will intercept another ship leaving a different point B at speed vB. The minimum time in interception of the two ships is calculated by means of straight-line paths. If the ships' speeds are held constant, their speed ratio is defined by μ. If both ships collide or meet at a future point, I, then the distances of each are related by the equation:[1]

Squaring both sides, we obtain:

Expanding:

Further expansion:

Bringing to the left-hand side:

Factoring:

Dividing by  :

Completing the square:

Bring non-squared terms to the right-hand side:

Then:

Therefore, the point must lie on a circle as defined by Apollonius, with their starting points as the foci.

Circles sharing a radical axis

Figure 2. A set of Apollonian circles. Every blue circle intersects every red circle at a right angle, and vice versa. Every red circle passes through the two foci, which correspond to points A and B in Figure 1.

The circles defined by the Apollonian pursuit problem for the same two points A and B, but with varying ratios of the two speeds, are disjoint from each other and form a continuous family that cover the entire plane; this family of circles is known as a hyperbolic pencil. Another family of circles, the circles that pass through both A and B, are also called a pencil, or more specifically an elliptic pencil. These two pencils of Apollonian circles intersect each other at right angles and form the basis of the bipolar coordinate system. Within each pencil, any two circles have the same radical axis; the two radical axes of the two pencils are perpendicular, and the centers of the circles from one pencil lie on the radical axis of the other pencil.

Solutions to Apollonius' problem

Apollonius' problem may have up to eight solutions. The three given circles are shown in black, whereas the solution circles are colored.

In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane.

Three given circles generically have eight different circles that are tangent to them and each solution circle encloses or excludes the three given circles in a different way: in each solution, a different subset of the three circles is enclosed.

Apollonian gasket

Figure 4. A symmetrical Apollonian gasket, also called the Leibniz packing, after its inventor Gottfried Leibniz

By solving Apollonius' problem repeatedly to find the inscribed circle, the interstices between mutually tangential circles can be filled arbitrarily finely, forming an Apollonian gasket, also known as a Leibniz packing or an Apollonian packing.[2] This gasket is a fractal, being self-similar and having a dimension d that is not known exactly but is roughly 1.3,[3] which is higher than that of a regular (or rectifiable) curve (d = 1) but less than that of a plane (d = 2). The Apollonian gasket was first described by Gottfried Leibniz in the 17th century, and is a curved precursor of the 20th-century Sierpiński triangle.[4] The Apollonian gasket also has deep connections to other fields of mathematics; for example, it is the limit set of Kleinian groups;[5] see also Circle packing theorem.

Isodynamic points of a triangle

The circles of Apollonius may also denote three special circles defined by an arbitrary triangle . The circle is defined as the unique circle passing through the triangle vertex that maintains a constant ratio of distances to the other two vertices and (cf. Apollonius' definition of the circle above). Similarly, the circle is defined as the unique circle passing through the triangle vertex that maintains a constant ratio of distances to the other two vertices and , and so on for the circle .

All three circles intersect the circumcircle of the triangle orthogonally. All three circles pass through two points, which are known as the isodynamic points and of the triangle. The line connecting these common intersection points is the radical axis for all three circles. The two isodynamic points are inverses of each other relative to the circumcircle of the triangle.

The centers of these three circles fall on a single line (the Lemoine line). This line is perpendicular to the radical axis, which is the line determined by the isodynamic points.

See also

References

  1. ^ Weintraub, Isaac; Garcia, Eloy; Pachter, Meir (2020). "Optimal guidance strategy for the defense of a non‐manoeuvrable target in 3‐dimensions". IET Control Theory & Applications. 14 (11): 1531–1538. doi:10.1049/iet-cta.2019.0541.
  2. ^ Kasner, E.; Supnick, F. (1943). "The Apollonian packing of circles". Proceedings of the National Academy of Sciences USA. 29 (11): 378–384. Bibcode:1943PNAS...29..378K. doi:10.1073/pnas.29.11.378. PMC 1078636. PMID 16588629.
  3. ^ Boyd, David W. (1973). "Improved Bounds for the Disk Packing Constants". Aequationes Mathematicae. 9: 99–106. doi:10.1007/BF01838194. S2CID 121089590.
    Boyd, David W. (1973). "The Residual Set Dimension of the Apollonian Packing". Mathematika. 20 (2): 170–174. doi:10.1112/S0025579300004745.
    McMullen, Curtis, T. (1998). "Hausdorff dimension and conformal dynamics III: Computation of dimension" (PDF). American Journal of Mathematics. 120 (4): 691–721. doi:10.1353/ajm.1998.0031. S2CID 15928775.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Mandelbrot, B. (1983). The Fractal Geometry of Nature. New York: W.H. Freeman. p. 170. ISBN 978-0-7167-1186-5.
    Aste, T., and Weaire, D. (2008). The Pursuit of Perfect Packing (2nd ed.). New York: Taylor and Francis. pp. 131–138. ISBN 978-1-4200-6817-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. ^ Mumford, D., Series, C., and Wright, D. (2002). Indra's Pearls: The Vision of Felix Klein. Cambridge: Cambridge University Press. pp. 196–223. ISBN 0-521-35253-3.{{cite book}}: CS1 maint: multiple names: authors list (link)

Bibliography

Read other articles:

Stanislav Rostotsky(Станислав Ростоцкий)Stanislav RostotskyLahirStanislav Iosifovich Rostotsky(1922-04-21)21 April 1922Rybinsk, RSFS RussiaMeninggal10 Agustus 2001(2001-08-10) (umur 79)Vyborg, RusiaSuami/istriNina Menshikova Stanislav Iosifovich Rostotsky (bahasa Rusia: Станисла́в Ио́сифович Росто́цкий; 21 April 1922, Rybinsk – 10 Agustus 2001, Vyborg) adalah seorang sutradara Rusia, penerima dua Penghargaan Negara USSR dan sebuah Pen...

ВіттонкурVittoncourt   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Форбак-Буле-Мозель Кантон Фолькемон Код INSEE 57726 Поштові індекси 57580 Координати 49°01′17″ пн. ш. 6°25′50″ сх. д.H G O Висота 221 - 277 м.н.р.м. Площа 9,51 км² Населення 385 (01-2020[1]) Густота 4...

Cet article est une ébauche concernant un explorateur et l’Arctique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Peter Warren DeaseBiographieNaissance 1er janvier 1788Fort MichilimakinacDécès 17 janvier 1863 (à 75 ans)MontréalNationalité canadienneActivité Explorateurmodifier - modifier le code - modifier Wikidata Peter Warren Dease, né le 1er janvier 1788 à Michilimackinac, Michigan aux État...

2014 single by Maroon 5 This article is about the Maroon 5 song. For other uses, see Animal (disambiguation). AnimalsSingle by Maroon 5from the album V ReleasedAugust 25, 2014 (2014-08-25)Studio MXM, Stockholm Conway, Los Angeles Genre Electropop dance-pop pop rock Length3:51Label 222 Interscope Songwriter(s) Adam Levine Shellback Benjamin Levin Producer(s)ShellbackMaroon 5 singles chronology It Was Always You (2014) Animals (2014) Sugar (2015) Music videoAnimals on YouTube Ani...

غابابنتين غابابنتين الاسم النظامي 2-[1-(aminomethyl)cyclohexyl]acetic acid يعالج صرع جزئي،  والألم،  واضطراب ثنائي القطب،  واضطراب القلق الاجتماعي،  واستعدادية التهاب المفصل العظمي 1  [لغات أخرى]‏،  وصداع نصفي،  وألم عضلي ليفي،  ومتلازمة تململ الساقين،  وهربس نط�...

Museu Casa do Sertão Museu Casa do Sertão Tipo museu universitário Inauguração 1978 (45 anos) Página oficial (Website) Geografia Coordenadas 12° 12' 3.504 S 38° 57' 58.145 O Localização Feira de Santana - Brasil [edite no Wikidata] Museu Casa do Sertão é um museu localizado dentro do campus da Universidade Estadual de Feira de Santana (UEFS), ao qual pertence, e inaugurado em 30 de junho de 1978; foi construído pelo Lions Clube de Feira de Santana e p...

SimutransCuplikanSimutrans Pak 64 screenshotPengembangMarkus Pristovsek Prissi (kepala pengembangan saat ini)Simutrans Development TeamRilis perdana6 Maret 1999Rilis stabil0.100.0 / 28 Juni 2008Rilis pratayang0.100.1 Repositoriservers.simutrans.org Sistem operasiMulti-platformPlatformAntar-platformTersedia dalamMultibahasaJenisBusiness simulationLisensiArtistic LicenseSitus webSitus Resmi Simutrans Simutrans adalah permainan simulasi antar-platform yang mempunyai tujuan agar pemain dapat menj...

Ini adalah nama Korea; marganya adalah Chun. Chun Myung-hoonInformasi latar belakangLahir6 April 1978 (umur 45)Seoul, Korea SelatanGenreK-pop, pop dansaPekerjaanPenyanyi, rapper, pemeranTahun aktif1996–sekarangLabelMusic Factory EntertainmentGenie MusicArtis terkait NRG HOTSechgodRG Chun Myung-hoonHangul천명훈 Hanja千明勳 Alih AksaraCh'ŏn Myŏng-hunMcCune–ReischauerCheon Myeong-hun Chun Myung-hoon (lahir 6 April 1978) adalah seorang penyanyi, rapper, pemeran dan presenter tele...

Former Australian television channel This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ten Guide – news · newspapers · books · scholar · JSTOR (March 2019) (Learn how and when to remove this template message) Television channel Ten GuideCountryAustraliaBroadcast areaSydney, Melbourne, Brisbane, Adelaide, Perth...

For GiroBank (Denmark 1991-1995), see Danske Bank. National GirobankTypeStatutory corporation (1968) Public limited company (1988)IndustryFinancial servicesFounded1968; 55 years ago (1968)Defunct2003FatePrivatisedSuccessorAlliance & Leicester Commercial BankHeadquartersBootle, MerseysideProductsPostal giro, retail banking National Girobank was a British public sector financial institution run by the General Post Office that opened for business in October 1968.[1]...

Upazila in Rajshahi Division, BangladeshSirajganj Sadar সিরাজগঞ্জ সদরUpazilaJamuna BridgeSirajganj SadarLocation in BangladeshCoordinates: 24°27.5′N 89°42′E / 24.4583°N 89.700°E / 24.4583; 89.700Country BangladeshDivisionRajshahi DivisionDistrictSirajganj DistrictArea • Total325.77 km2 (125.78 sq mi)Population (2011) • Total555,155 • Density1,700/km2 (4,400/sq mi)Time zone...

Untuk kegunaan lain, lihat Gajah Mada. Gajah MadaGenre Drama Roman Laga PembuatMD EntertainmentSutradaraDedy MercyPemeran Rafael P. Ismy Chicco Jerikho Zora Vidyanata Barry Prima Adam Farrel Anne.J.Coto Ryana Dea Ratu Felisha Adhi Pawitra Chilla Irawan Penggubah lagu temaRegina IdolLagu pembukaGajah Mada — Regina IdolLagu penutupGajah Mada — Regina IdolPenata musik Nikanor RS Hariprawiro Iswara Giovani Negara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode178 (daft...

Booklet 3G Тип Нетбук Разработчик Nokia Дата выпуска 24 августа 2009 года Процессор Intel Atom Z530 1.6 ГГц Оперативная память 1 ГБ RAM ОС Windows 7  Медиафайлы на Викискладе Nokia Booklet 3G — первый нетбук фирмы Nokia, анонсированный 24 августа 2009 года[1]. Более подробная информация о нетбуке была...

Stade Mbappé Léppé LocalizaciónPaís  CamerúnLocalidad DualaCoordenadas 4°02′41″N 9°41′38″E / 4.04462, 9.69398Detalles generalesNombre completo Stade Samuel Mbappé LéppéNombres anteriores Stade Akwa (1958-1985)Superficie CéspedDimensiones 104 x 66 mCapacidad 4000 espectadoresConstrucciónApertura 1958Remodelación 1965Equipo local Kadji Sports AcademyAcontecimientos clasificación de CAF para la Copa Mundial de Fútbol de 1970[editar datos en ...

Place in Pomeranian Voivodeship, PolandStarogard GdańskiFrom top, left to right: City HallSaint Matthew churchWiechert PalaceMarket SquareSaint Adalbert church FlagCoat of armsStarogard GdańskiCoordinates: 53°58′N 18°32′E / 53.967°N 18.533°E / 53.967; 18.533Country PolandVoivodeship PomeranianCountyStarogardGminaStarogard Gdański (urban gmina)Established1198City rights1348Government • City mayorJanusz StankowiakArea • Total2...

Fields of philosophical, theological, and legal scholarship Part of a series on theCanon law of theCatholic Church Ius vigens (current law) 1983 Code of Canon Law Omnium in mentem Magnum principium Code of Canons of the Eastern Churches Ad tuendam fidem Ex corde Ecclesiae Indulgentiarum Doctrina Praedicate evangelium Veritatis gaudium Custom Matrimonial nullity trial reforms of Pope Francis Documents of the Second Vatican Council Christus Dominus Lumen gentium Optatam totius Orientalium eccle...

Miro開發者Participatory Culture Foundation(英语:Participatory Culture Foundation)首次发布2006年2月21日(0.8.0-rc4)当前版本6.0 (2013年4月5日;穩定版本)[1] 源代码库github.com/pculture/miro 编程语言Python(GTK+)操作系统跨平台类型網絡電視许可协议GNU通用公共许可证网站http://getmiro.com/ Miro(原名為Democracy Player及DTV[2])是由網絡共享文化基金會(英语:Participatory Culture Foundation)開發的集...

「情報衛星」はこの項目へ転送されています。日本に於ける偵察衛星については「情報収集衛星」をご覧ください。 アメリカの偵察衛星 KH-4Bの構造図 偵察衛星(ていさつえいせい)とは、光学機器(望遠レンズ付カメラ)や電波を用いて、地表を観察し地上へ知らせる軍事目的の人工衛星(軍事衛星)である。「スパイ衛星」とも言う。 概要 比較的攻撃を受けにくい...

Paghimo ni bot Lsjbot. 18°16′22″N 76°46′02″W / 18.27268°N 76.76712°W / 18.27268; -76.76712 Pencar River The Pencar River, Pincar River Suba Nasod  Jamayka Parokya Parish of Saint Mary Gitas-on 2 m (7 ft) Tiganos 18°16′22″N 76°46′02″W / 18.27268°N 76.76712°W / 18.27268; -76.76712 Timezone EST (UTC-5) GeoNames 3489076 Suba ang Pencar River sa Jamayka.[1] Nahimutang ni sa parokya sa Parish of Saint Mary, sa ...

Catholic ecclesiastical territory Diocese of London, OntarioDiœcesis LondonensisCoat of armsLocationCountry CanadaEcclesiastical provinceOntarioMetropolitanArchdiocese of TorontoDeaneries7StatisticsArea21,349 km2 (8,243 sq mi)The territory comprises the following counties of Ontario: Middlesex, Elgin, Norfolk, Perth, Huron, Lambton, Kent, & Essex.Population- Total- Catholics1,944,182444,310 (22.8%)Parishes131InformationDenominationCatholic ChurchSui iur...