A regular polygon is a zonogon if and only if it has an even number of sides.[2] Thus, the square, regular hexagon, and regular octagon are all zonogons.
The four-sided zonogons are the square, the rectangles, the rhombi, and the parallelograms.
Tiling and equidissection
The four-sided and six-sided zonogons are parallelogons, able to tile the plane by translated copies of themselves, and all convex parallelogons have this form.[3]
Every -sided zonogon can be tiled by parallelograms.[4] (For equilateral zonogons, a -sided one can be tiled by rhombi.) In this tiling, there is a parallelogram for each pair of slopes of sides in the -sided zonogon. At least three of the zonogon's vertices must be vertices of only one of the parallelograms in any such tiling.[5] For instance, the regular octagon can be tiled by two squares and four 45° rhombi.[6]
In an -sided zonogon, at most pairs of vertices can be at unit distance from each other. There exist -sided zonogons with
unit-distance pairs.[9]
Related shapes
Zonogons are the two-dimensional analogues of three-dimensional zonohedra and higher-dimensional zonotopes. As such, each zonogon can be generated as the Minkowski sum of a collection of line segments in the plane.[1] If no two of the generating line segments are parallel, there will be one pair of parallel edges for each line segment. Every face of a zonohedron is a zonogon, and every zonogon is the face of at least one zonohedron, the prism over that zonogon. Additionally, every planar cross-section through the center of a centrally-symmetric polyhedron (such as a zonohedron) is a zonogon.
^Young, John Wesley; Schwartz, Albert John (1915), Plane Geometry, H. Holt, p. 121, If a regular polygon has an even number of sides, its center is a center of symmetry of the polygon