4-polytope

Graphs of the six convex regular 4-polytopes
{3,3,3} {3,3,4} {4,3,3}

5-cell
Pentatope
4-simplex

16-cell
Orthoplex
4-orthoplex

8-cell
Tesseract
4-cube
{3,4,3} {3,3,5} {5,3,3}

24-cell
Octaplex

600-cell
Tetraplex

120-cell
Dodecaplex

In geometry, a 4-polytope (sometimes also called a polychoron,[1] polycell, or polyhedroid) is a four-dimensional polytope.[2][3] It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.[4]

The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron.

Topologically 4-polytopes are closely related to the uniform honeycombs, such as the cubic honeycomb, which tessellate 3-space; similarly the 3D cube is related to the infinite 2D square tiling. Convex 4-polytopes can be cut and unfolded as nets in 3-space.

Definition

A 4-polytope is a closed four-dimensional figure. It comprises vertices (corner points), edges, faces and cells. A cell is the three-dimensional analogue of a face, and is therefore a polyhedron. Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are also 4-polytopes, i.e. it is not a compound.

Geometry

The convex regular 4-polytopes are the four-dimensional analogues of the Platonic solids. The most familiar 4-polytope is the tesseract or hypercube, the 4D analogue of the cube.

The convex regular 4-polytopes can be ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius. Each greater polytope in the sequence is rounder than its predecessor, enclosing more content[5] within the same radius. The 4-simplex (5-cell) is the limit smallest case, and the 120-cell is the largest. Complexity (as measured by comparing configuration matrices or simply the number of vertices) follows the same ordering.

Regular convex 4-polytopes
Symmetry group A4 B4 F4 H4
Name 5-cell

Hyper-tetrahedron
5-point

16-cell

Hyper-octahedron
8-point

8-cell

Hyper-cube
16-point

24-cell


24-point

600-cell

Hyper-icosahedron
120-point

120-cell

Hyper-dodecahedron
600-point

Schläfli symbol {3, 3, 3} {3, 3, 4} {4, 3, 3} {3, 4, 3} {3, 3, 5} {5, 3, 3}
Coxeter mirrors
Mirror dihedrals 𝝅/3 𝝅/3 𝝅/3 𝝅/2 𝝅/2 𝝅/2 𝝅/3 𝝅/3 𝝅/4 𝝅/2 𝝅/2 𝝅/2 𝝅/4 𝝅/3 𝝅/3 𝝅/2 𝝅/2 𝝅/2 𝝅/3 𝝅/4 𝝅/3 𝝅/2 𝝅/2 𝝅/2 𝝅/3 𝝅/3 𝝅/5 𝝅/2 𝝅/2 𝝅/2 𝝅/5 𝝅/3 𝝅/3 𝝅/2 𝝅/2 𝝅/2
Graph
Vertices 5 tetrahedral 8 octahedral 16 tetrahedral 24 cubical 120 icosahedral 600 tetrahedral
Edges 10 triangular 24 square 32 triangular 96 triangular 720 pentagonal 1200 triangular
Faces 10 triangles 32 triangles 24 squares 96 triangles 1200 triangles 720 pentagons
Cells 5 tetrahedra 16 tetrahedra 8 cubes 24 octahedra 600 tetrahedra 120 dodecahedra
Tori 1 5-tetrahedron 2 8-tetrahedron 2 4-cube 4 6-octahedron 20 30-tetrahedron 12 10-dodecahedron
Inscribed 120 in 120-cell 675 in 120-cell 2 16-cells 3 8-cells 25 24-cells 10 600-cells
Great polygons 2 squares x 3 4 rectangles x 4 4 hexagons x 4 12 decagons x 6 100 irregular hexagons x 4
Petrie polygons 1 pentagon x 2 1 octagon x 3 2 octagons x 4 2 dodecagons x 4 4 30-gons x 6 20 30-gons x 4
Long radius
Edge length
Short radius
Area
Volume
4-Content

Visualisation

Example presentations of a 24-cell
Sectioning Net
Projections
Schlegel 2D orthogonal 3D orthogonal

4-polytopes cannot be seen in three-dimensional space due to their extra dimension. Several techniques are used to help visualise them.

Orthogonal projection

Orthogonal projections can be used to show various symmetry orientations of a 4-polytope. They can be drawn in 2D as vertex-edge graphs, and can be shown in 3D with solid faces as visible projective envelopes.

Perspective projection

Just as a 3D shape can be projected onto a flat sheet, so a 4-D shape can be projected onto 3-space or even onto a flat sheet. One common projection is a Schlegel diagram which uses stereographic projection of points on the surface of a 3-sphere into three dimensions, connected by straight edges, faces, and cells drawn in 3-space.

Sectioning

Just as a slice through a polyhedron reveals a cut surface, so a slice through a 4-polytope reveals a cut "hypersurface" in three dimensions. A sequence of such sections can be used to build up an understanding of the overall shape. The extra dimension can be equated with time to produce a smooth animation of these cross sections.

Nets

A net of a 4-polytope is composed of polyhedral cells that are connected by their faces and all occupy the same three-dimensional space, just as the polygon faces of a net of a polyhedron are connected by their edges and all occupy the same plane.

Topological characteristics

The tesseract as a Schlegel diagram

The topology of any given 4-polytope is defined by its Betti numbers and torsion coefficients.[6]

The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 4-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.[6]

Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal 4-polytopes, and this led to the use of torsion coefficients.[6]

Classification

Criteria

Like all polytopes, 4-polytopes may be classified based on properties like "convexity" and "symmetry".

Classes

The following lists the various categories of 4-polytopes classified according to the criteria above:

The truncated 120-cell is one of 47 convex non-prismatic uniform 4-polytopes

Uniform 4-polytope (vertex-transitive):

Other convex 4-polytopes:

The regular cubic honeycomb is the only infinite regular 4-polytope in Euclidean 3-dimensional space.

Infinite uniform 4-polytopes of Euclidean 3-space (uniform tessellations of convex uniform cells)

Infinite uniform 4-polytopes of hyperbolic 3-space (uniform tessellations of convex uniform cells)

Dual uniform 4-polytope (cell-transitive):

Others:

The 11-cell is an abstract regular 4-polytope, existing in the real projective plane, it can be seen by presenting its 11 hemi-icosahedral vertices and cells by index and color.

Abstract regular 4-polytopes:

These categories include only the 4-polytopes that exhibit a high degree of symmetry. Many other 4-polytopes are possible, but they have not been studied as extensively as the ones included in these categories.

See also

  • Regular 4-polytope
  • 3-sphere – analogue of a sphere in 4-dimensional space. This is not a 4-polytope, since it is not bounded by polyhedral cells.
  • The duocylinder is a figure in 4-dimensional space related to the duoprisms. It is also not a 4-polytope because its bounding volumes are not polyhedral.

References

Notes

  1. ^ N.W. Johnson: Geometries and Transformations, (2018) ISBN 978-1-107-10340-5 Chapter 11: Finite Symmetry Groups, 11.1 Polytopes and Honeycombs, p.224
  2. ^ Vialar, T. (2009). Complex and Chaotic Nonlinear Dynamics: Advances in Economics and Finance. Springer. p. 674. ISBN 978-3-540-85977-2.
  3. ^ Capecchi, V.; Contucci, P.; Buscema, M.; D'Amore, B. (2010). Applications of Mathematics in Models, Artificial Neural Networks and Arts. Springer. p. 598. doi:10.1007/978-90-481-8581-8. ISBN 978-90-481-8580-1.
  4. ^ Coxeter 1973, p. 141, §7-x. Historical remarks.
  5. ^ Coxeter 1973, pp. 292–293, Table I(ii): The sixteen regular polytopes {p,q,r} in four dimensions: [An invaluable table providing all 20 metrics of each 4-polytope in edge length units. They must be algebraically converted to compare polytopes of unit radius.]
  6. ^ a b c Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy, Princeton, 2008.
  7. ^ Uniform Polychora, Norman W. Johnson (Wheaton College), 1845 cases in 2005

Bibliography

  • H.S.M. Coxeter:
    • Coxeter, H.S.M. (1973) [1948]. Regular Polytopes (3rd ed.). New York: Dover.
    • H.S.M. Coxeter, M.S. Longuet-Higgins and J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Four-dimensional Archimedean Polytopes (German), Marco Möller, 2004 PhD dissertation [2] Archived 2005-03-22 at the Wayback Machine
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds

Read other articles:

Keuskupan Lucera–TroiaDioecesis Lucerina-TroianaKatolik Katedral LuceraLokasiNegaraItaliaProvinsi gerejawiFoggia-BovinoStatistikLuas1.337 km2 (516 sq mi)Populasi- Total- Katolik(per 2016)67.600 (perkiraan)66,300 (perkiraan) (98.1%)Paroki33Imam55 (diosesan)20 (Ordo Relijius)6 Deakon PermanenInformasiDenominasiGereja KatolikRitusRitus RomaPendirianAbad ke-4 1986 (penggabungan)KatedralKatedral LuceraKonkatedralKatedral TroiaKepemimpinan kiniPausFransiskusUsku...

 

Pemakaman Muslim Al-Azhar Memorial Garden adalah Taman Pemakaman Islam yang merupakan unit usaha Yayasan Pesantren Islam Al-Azhar[1] yang bergerak di bidang layanan pemakaman Islam sejak tahun 2011.[2] Al-Azhar Memorial Garden : Taman Pemakaman Muslim Pemakaman Muslim Al-Azhar Memorial Garden berlokasi sekitar 10 menit dari exit tol Karawang Timur 2 dan dapat diakses melalui Tol LAYANG Jakarta Cikampek. Pemakaman Islam seluas 25 ha ini dapat menampung sekitar 29,000 jenaz...

 

Ikon Rusia tentang Pesta Pemuliaan Salib (ikon dari Yaroslavl; karya Gury Nikitin, 1980, Tretyakov Gallery di Moskow). Dalam kalender liturgi Kekristenan, ada beberapa Pesta Pemuliaan Salib Suci yang berbeda, yang mana semuanya memperingati Salib yang digunakan untuk menyalibkan Yesus. Jumat Agung ditujukan untuk mengenang Sengsara dan Penyaliban Kristus, sedangkan Pesta Salib Suci dikhususkan untuk merayakan kayu salib itu sendiri sebagai instrumen keselamatan. 14 September Pesta atau hari r...

У этого термина существуют и другие значения, см. Ворон (значения). Воронангл. The Raven Иллюстрация Джона Нила к сборнику «Ворон и другие стихотворения» (1910) Жанр стихотворение Автор Эдгар Аллан По Язык оригинала английский Дата первой публикации 29 января 1845 Издательство E...

 

Town in Arizona Town in Arizona, United StatesParker, ArizonaTownHistoric Downtown Parker FlagLocation of Parker in La Paz County, ArizonaParker, ArizonaLocation in the United StatesCoordinates: 34°8′41″N 114°17′23″W / 34.14472°N 114.28972°W / 34.14472; -114.28972[1]CountryUnited StatesStateArizonaCountyLa PazNamed forEly S. ParkerGovernment • MayorKaren Bonds • Vice MayorJerry Hooper • Town CouncilRandy Hartless ...

 

Марианна Австрийская нем. Maria Anna von Österreich исп. Mariana de Austria Портрет королевы Марианны кисти Веласкеса, 1655-1660 г. Королева Испании 7 октября 1649 — 17 сентября 1665 Предшественник Изабелла Французская Преемник Мария Луиза Орлеанская Регентша Испании 17 сентября 1665 — 6 ноя...

Protected area in New South Wales, AustraliaScottsdale ReserveNew South WalesScottsdale ReserveNearest town or cityBredbo, New South WalesCoordinates35°54′09″S 149°07′41″E / 35.9024°S 149.128°E / -35.9024; 149.128Established2006Area13.28 km2 (5.1 sq mi)Managing authoritiesBush Heritage AustraliaWebsiteScottsdale Reserve Scottsdale Reserve is a 1,328-hectare (3,280-acre) nature reserve on the Murrumbidgee River in south-central New South Wale...

 

Likia/LykiaLycia (Λυκία)Daerah di Anatolia kunoMakam Lykia yang digali dari batu karang di DalyanLokasiAnatolia selatanNegara adasek. abad ke-15 sampai 14 SM (sebagai Lukka)1250–546 SMBahasaBahasa LikiaIbu kota historisXanthosProvinsi RomawiLyciaLetak Likia di Anatolia Likia atau Lykia (bahasa Likia: Trm̃mis; Yunani: Λυκία) adalah daerah di Anatolia di tempat yang kini menjadi Provinsi Antalya dan Muğla di pesisir selatan Turki. Daerah ini pernah menjadi federasi kota-ko...

 

Stasiun Semarang TawangBank Jateng BL02KS02KD01JS22 Tampak depan Stasiun Semarang Tawang, 2024Nama lainStasiun TawangLokasiJalan Taman Tawang 1Tanjung Mas, Semarang Utara, Semarang, Jawa Tengah 50174IndonesiaKoordinat6°57′52″S 110°25′40″E / 6.96444°S 110.42778°E / -6.96444; 110.42778Koordinat: 6°57′52″S 110°25′40″E / 6.96444°S 110.42778°E / -6.96444; 110.42778Ketinggian+2 mOperator Kereta Api IndonesiaDaerah Operasi IV S...

American politician James Henry Platt Jr.Member of the U.S. House of Representativesfrom Virginia's 2nd districtIn officeJanuary 27, 1870 – March 3, 1875Preceded byJohn Millson (1861)Succeeded byJohn GoodeChairman of the Committee on Public Buildings and GroundsIn officeMarch 4, 1873 – March 3, 1875Preceded byGeorge Armstrong HalseySucceeded byWilliam Steele Holman Personal detailsBorn(1837-07-13)July 13, 1837Saint John, Colony of New BrunswickDiedAugust 13, 1894(1894...

 

Set of the values of a function For other uses, see Image (disambiguation). f {\displaystyle f} is a function from domain X {\displaystyle X} to codomain Y {\displaystyle Y} . The image of element x {\displaystyle x} is element y {\displaystyle y} . The preimage of element y {\displaystyle y} is the set { x , x ′ {\displaystyle x,x'} }. The preimage of element y ′ {\displaystyle y'} is ∅ {\displaystyle \varnothing } . f {\displaystyle f} is a function from domain X {\disp...

 

Executive office building of the Government of the Province of Tucumán The Tucumán Government Palace The Tucumán Government Palace is the executive office building of the Government of the Province of Tucumán. Overview Tucumán Province, the most populous and economically important in the Argentine Northwest, lacked architecturally significant government offices, early in the 20th Century. As both a remedy to that absence and a means to encourage urban renewal and development in the provi...

Mizar (Sabotaggio in mare)Dawn Addams e Franco SilvaPaese di produzioneItalia Anno1954 Durata96 min Dati tecnicibianco/nero Genereguerra RegiaFrancesco De Robertis SoggettoFrancesco De Robertis SceneggiaturaFrancesco De Robertis ProduttoreFilm Costellazione FotografiaCarlo Bellero MontaggioEraldo Da Roma MusicheAnnibale Bizzelli ScenografiaGianni Polidori Interpreti e personaggi Dawn Addams: Mizar Paolo Stoppa: console italiano Antonio Centa: dottor Vargas Franco Silva: commendator Luigi Ferr...

 

Questa voce sull'argomento valli d'Italia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Valle del LamoneIl Lamone nei pressi di MarradiStati Italia Regioni Emilia-Romagna Toscana Province Ravenna Firenze Località principaliMarradiBrisighella Modifica dati su Wikidata · Manuale La valle del Lamone è un'area geografica definita dal fiume Lamone, che si estende sul territorio delle province di Ravenna in Emilia-Romagna ...

 

Questa voce sull'argomento calciatori maliani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Cheick Diarra Nazionalità  Mali Altezza 174 cm Calcio Ruolo Attaccante Squadra  Créteil-Lusitanos CarrieraGiovanili  Centre Salif KeitaSquadre di club1 2008-2011 Centre Salif Keita? (?)2011 Stade Malien0 (0)2011-2012 Rennes 220 (17)2011-2013 Rennes19 (1)2013-2014→  I...

周處除三害The Pig, The Snake and The Pigeon正式版海報基本资料导演黃精甫监制李烈黃江豐動作指導洪昰顥编剧黃精甫主演阮經天袁富華陳以文王淨李李仁謝瓊煖配乐盧律銘林孝親林思妤保卜摄影王金城剪辑黃精甫林雍益制片商一種態度電影股份有限公司片长134分鐘产地 臺灣语言國語粵語台語上映及发行上映日期 2023年10月6日 (2023-10-06)(台灣) 2023年11月2日 (2023-11-02)(香�...

 

Indian film by ShyamaPrasad Ore KadalDirected byShyamaprasadWritten byShyamaprasadProduced byVindhayanStarringMammoottyMeera JasmineNarainRamya KrishnanCinematographyAlagappan N.Edited byVinod SukumaranMusic byOuseppachanRelease date 27 August 2007 (2007-08-27) Running time100 minutesCountryIndiaLanguageMalayalam Ore Kadal (English: The Sea Within) is a 2007 Malayalam-language film written and directed by Shyamaprasad. The film is based on Sunil Gangopadhyay’s Bengali novel H...

 

Commercial building in Newark-on-Trent, Nottinghamshire, England Corn Exchange, Newark-on-TrentCorn Exchange, Newark-on-TrentLocationCastle Gate, Newark-on-TrentCoordinates53°04′36″N 0°48′47″W / 53.0767°N 0.8130°W / 53.0767; -0.8130Built1847ArchitectHenry DuesburyArchitectural style(s)Italianate style Listed Building – Grade IIOfficial nameFormer Corn Exchange, now Silverline BingoDesignated19 May 1971Reference no.1196050 Shown in Nottinghamshire The...

Muséum des sciences naturelles Liste des musées à Bruxelles (dans les 19 communes de la Région de Bruxelles-Capitale et la périphérie immédiate) triés par nom de commune. Anderlecht Béguinage d'Anderlecht Maison d'Érasme Musée bruxellois de la gueuze Musée d'Anatomie et d'Embryologie humaines Musée de la Médecine Musée national de la Résistance Musée Maurice Carême Auderghem Centre d'Art du Rouge-Cloître Jardin botanique Jean Massart Berchem-Sainte-Agathe Ville de Bruxelles...

 

Gunung Semanggol adalah sebuah mukim di Daerah Kerian, Negara Bagian Perak, Malaysia. Gunung Semanggol terletak di negeri Perak. Gunung Semanggol, berdekatan dengan Ulu Sepetang dan Kampung Sera. Masjid di Gunung Semanggol Masjid Al-Abrar, Alor Setonggok, 34400 Simpang 4, Perak Masjid Al-Amin, Kampung Selinsing, 34400 Simpang 4, Semanggol, Perak Masjid Al-Ehsaniah, Parit 3, Jalan Gula, 34400 Simpang 4, Semanggol, Perak Masjid Al-Huda, Tebuk Matau, 34400 Simpang 4, Semanggol, Perak Masjid An-N...