OXGR1, i.e., 2-oxoglutarate receptor 1 (also known as GPR99, cysteinyl leukotriene receptor E, i.e., CysLTE, and cysteinyl leukotriene receptor 3, i.e., CysLT3[5][6]) is a G protein-coupled receptor located on the surface membranes of certain cells. It functions by binding one of its ligands and thereby becoming active in triggering pre-programmed responses in its parent cells. OXGR1 has been shown to be activated by α-ketoglutarate,[7] itaconate,[8] and three cysteinyl-containing leukotrienes (abbreviated as CysLTs), leukotriene E4 (i.e., LTE4), LTC4, and LTD4.[5][9] α-Ketoglutarate and itaconate are the dianionic forms of α-ketoglutaric acid and itaconic acid, respectively. α-Ketoglutaric and itaconic acids are short-chain dicarboxylic acids that have two carboxyl groups (notated as -CO2H) both of which are bound to hydrogen (i.e., H+). However, at the basicpH levels (i.e., pH>7) in virtually all animal tissues, α-ketoglutaric acid and itaconic acid exit almost exclusively as α-ketoglutarate and itaconate, i.e., with their carboxy residues being negatively charged (notated as -CO2), because they are not bound to H+ (see Conjugate acid-base theory). It is α-ketoglutarate and itaconate, not α-ketoglutaric or itaconic acids, which activate OXGR1.[7][8]
History
In 2001, a human gene projected to code for a G protein-coupled receptor (i.e., a receptor that stimulates cells by activating G proteins) was identified. Its protein product was classified as an orphan receptor, i.e., a receptor whose activating ligand and function are unknown. The projected amino acid sequence of the protein encoded by this gene bore similarities to the purinergic receptor, P2Y1, and therefore might, like P2Y1, be a receptor for purines. This study named the new receptor and its gene GPR80 and GPR80, respectively.[10] Shortly thereafter, a second study found this same gene, indicated that it coded for a G protein-coupled receptor, had an amino acid sequence similar to two purinergic receptors, P2Y1 and GPR91, and determined that a large series of purine nucleotides, other nucleotides, and derivatives of these compounds did not activate this receptor. The study named this receptor GPR99.[11] A third study published in 2004 reported an orphan G protein-coupled receptor with an amino acid sequence similar to the P2Y receptor family of nucleotides was activated by two purines, adenosine and adenosine monophosphate. The study nominated this receptor to be a purinergic receptor and named it the P2Y15 receptor.[12] However, a review in 2004 of these three studies by members of the International Union of Pharmacology Subcommittee for P2Y Receptor Nomenclature and Classification decided that GPR80/GPR99 is not a receptor for adenosine, adenosine monophosphate, or any other nucleotide.[13] A fourth study, also published in 2004, found that GPR80/GPR99 -bearing cells responded to α-ketoglutarate.[14] In 2013, IUPHAR accepted this report and the names OXGR1 and OXGR1 for the α-ketoglutarate responsive receptor and its gene, respectively.[15] In 2013, a fifth study found that LTE4, LTC4, and LTD4 activated OXGR1.[5] Finally, a 2023 study provided evidence that itaconate also activated OXGR1.[8][16]
OXGR1 gene
The human OXGR1 gene is located on chromosome 13 at position 13q32.2; that is, it resides at position 32.2 (i.e., region 3, band 2, sub-band 2) on the "q" arm (i.e., long arm) of chromosome 13.[11][17]OXGR1 codes for a G protein coupled-receptor that is primarily linked to and activates heterotrimeric G proteins containing the Gq alpha subunit. When bound to one of its ligands, OXGR1 activates Gq alpha subunit-regulated cellular pathways (see Functions of the Gq alpha pathways) that stimulate the cellular responses that these pathways are programmed to elicit.[18][19]
OXGR1 activating and inhibiting ligands
Activating ligands
OXGR1 is the receptor for α-ketoglutarate, LTE4, LTC4, LTD4, and itaconate. These ligands have the following relative potencies in stimulating responses in cultures of cells expressing human OXGR1:[8]
LTE4 >> LTC4 = LTD4 > α-ketoglutarate = itaconate
LTE4 is able to stimulate responses in at least some of its target cells at concentrations as low as a few picomoles/liter[5][8] whereas LTC4, LTD4, α-ketoglutarate, and itaconate require far higher levels to do so.[6][16]
These relationships suggest that CysTR1 and CysLTR2 are physiological receptors for LTD4 and LTC4 but due to its relative weakness in stimulating these two receptors, perhaps not or to a far lesser extent for LTE4. Indeed, the LTE4 concentrations needed to activate CysTR1 and CysLTR2 may be higher than those that normally occur in vivo (see Functions of OXGR1 in mediating the actions of LTE4, LTD4, and LTC4). These potency relationships suggest that the LTE4's actions are mediated primarily by OXGR1. The following findings support this suggestion. First, pretreatment of guinea pig trachea and human bronchial smooth muscle with LTE4 but not with LTC4 or LTD4 enhanced their smooth muscle contraction responses to histamine. This suggests LTE4's target receptor differs from the receptors targeted by LTC4 and LTD4. Second, LTE4 was as potent as LTC4 and LTD4 in eliciting vascular leakage when injected into the skin of guinea pigs and humans; the inhalation of LTE4 by asthmatic individuals caused the accumulation of eosinophils and basophils in their bronchial mucosa whereas the inhalation of LTD4 did not have this effect; and mice engineered to lack CysLTR1 and CysLTR2 receptors exhibited edema responses to the intradermal injection of LTC4, LTD4, and LTE4 but LTE4 was 64-fold more potent in triggering this response in these mice than in wild type mice. Since LTE4 should have been far less active than LTC4 or LTD4 in triggering vascular leakage, the recruitment of the cited cells into the lung, and causing vascular edema responses in mice lacking CysLT1 and CysLT2 receptors, these findings imply that the latter two receptors are not the primary receptors mediating LTF4' actions. And third, mice engineered to lack all three CysLTR1, CysLTR2, and OXGR1 receptors did not exhibit dermal edema responses to the injection of LTC4, LTD4, or LTE4 thereby indicating that at least one of these receptors was responsible for each of their actions. Overall, these findings suggest that LTE4 commonly acts through a different receptor than LTC4 and LTD4 and that this receptor is OXGR1.[5][9][20] Indeed, studies have defined OXGR1 as the high affinity receptor for LTF4.[9][21] Nonetheless, several studies have reported that cultures of certain types of inflammatory cells, e.g., the human LAD2 (but not LUVA) mast cell lines,[22]T helper cell lymphocytes that have differentiated into Th2 cells,[23] and mouse ILC2 lymphocytes (also termed type 2 innate lymphoid cells)[24] The levels of LTE4 used in some of these studies may not develop in animals or humans. In all events, dysfunctions caused by deleting the OXGR1 gene in cells, tissues or animals and dysfunctions in humans that are associated with a lack of a viable OXGR1 gene implicate the lack of OXGR1 protein in the development of these dysfunctions.[9][22]
Inhibiting ligand
OXGR1 is inhibited by Montelukast, a well-known and clinically useful receptor antagonist, i.e., inhibitor, of CysLTR1 but not CysTR2 activation. (Inhibitors of CysLTR2 have not been identified.[25]) In consequence, Montelukast blocks the binding and thereby the actions of LTE4, LTC4, and LTD4 that are mediated by OXGR1. It is presumed to act similarly to block the actions of α-ketoglutarate and itaconate on OXGR1.[5][26] It is not yet known if other CysLTR1 inhibitors can mimic Montelukast in blocking OXGR1's responses to α-ketoglutarate and itaconate. Montelukast is used to treat various disorders including asthma, exercise-induced bronchoconstriction, allergic rhinitis, primary dysmenorrhea (i.e. menstrual cramps not associated with known causes, see causes of dysmenorrhea), and urticaria (see Functions of CysLTR1). While it is likely that its inhibition of CysLTR1 accounts for its effects in these diseases, the ability of these leukotrienes, particularly LTE4, to stimulate OXGR1 allows that Montelukast's effects on these conditions may be due at least in part to its ability to block OXGR1.[5]
Expression
Based on their content of the OXGR1 protein or mRNA that directs its synthesis, OXGR1 is expressed in human: a) kidney, placenta, and fetal brain; b) cells that promote allergic and other hypersensitivity reactions, i.e., eosinophils and mast cells; c) tissues involved in allergic and other hypersensitivity reactions such as the lung trachea, salivary glands, and nasal mucosa;[5][27][28] and d)fibroblasts, i.e., cells that synthesize the extracellular matrix and collagen (when pathologically activated, these cells produce tissue fibrosis).[25] In mice, Oxgr1 mRNA is highly expressed in kidneys, testes, smooth muscle tissues,[5] nasal epithelial cells, and lung epithelial cells.[29]
Functions
Associated with OXGR1 gene defects or deficiencies
The following studies have defined OXGR1 functions based on the presence of disorders in mice or humans that do not have a viable OXGR1 protein. It is not been determined which of OXGR1's ligands, if any, are responsible for stimulating OXGR1 to prevent these disorders.
Otitis media
Mice lacking OXGPR1 protein due the knockout of their OXGR1 gene developed (82% penetrance) otitis media (i.e., inflammation in their middle ears), mucuseffusions in their middle ears, and hearing losses all which had many characteristics of human otitis media. The study did not find evidence that these mice had a middle ear bacterial infection. (Infection with Streptococcus pneumoniae, Moraxella catarrhalis, or other bacteria is one of the most common causes of otitis media.[30]) While the underlying mechanism for the development of this otitis has not been well-defined, the study suggests that OXER1 functions to prevent middle ear inflammations and Oxgr1 gene knockout mice may be a good model to study and relate to human ear pathophysiology.[31]
Goblet cells
Mice lacking OXGR1 protein due the knockout of their OXGR1 gene had significantly fewer numbers of mucin-containing goblet cells in their nasal mucosa than control mice. Cysltr1 gene knockout mice and Cysltr2 gene knockout mice had normal numbers of these nasal goblet cells. This finding implicates OXGR1 in functioning to maintain higher numbers of airway goblet cells.[29]
Kidney stones and nephrocalcinosis
Majmunda et al. identified 6 individuals from different families with members that had histories of developing calcium-containing kidney stones (also termed nephrolithiasis) and/or nephrocalcinosis (i.e., the deposition of calcium-containing material in multiple sites throughout the kidney). Each of these 6 individuals had dominant variants in their OXGR1 gene. These variant genes appeared (based on their OXGR1 gene's DNA structure as defined by exome sequencing) to be unable to form an active OXGR1 protein. The study proposed that the OXGR1 gene is a candidate for functioning to suppress the development of calcium-containing nephrolithiasis and nephrocalcinosis in humans.[32]
Associated with α-ketoglutarate-regulated functions
Studies in rodents have found that the ability of α-ketoglutarate to regulate various functions is dependent on its activation of OXGR1 (see OXGR1 receptor-dependent bioactions of α-ketoglutarate). These functions include: promoting normal kidney functions such as the absorption of key urinary ions and maintenance of acid base balance;[33] regulating the development of glucose tolerance as defined by glucose tolerance tests;[34] suppressing the development of diet-induced obesity;[35] and suppressing the muscle atrophy response to excessive exercise.[35]
Associated with LTE4-induced functions
A study showed that LTE4, LTC4, and LTD4 produce similar levels of vascular leakage and localized tissue swelling when injected into the skin of guinea pigs or humans. Studies that examined the effects of using various doses of these LTs after injection into the earlobes of mice found that, in comparison to control mice, OXGR1 gene knockout mice showed virtually no response to injection of a low dose of LTE4, a greatly reduced response to injection of an intermediate dose of LTE4, and a somewhat delayed but otherwise similar response to a high dose of LTE4 (these doses were 0.008, 0.0625, and 0.5 nmols, respectively). The study concluded that lower levels of LTE4 act primarily through OXGR1 to cause vascular permeability and, since it is the major cysteinyl leukotriene that accumulates in inflamed tissues, suggested that OXGR1 may be a therapeutic target for treating inflammatory disorders.[5] Another study found that the application of an extract of Alternaria alternata (a genus of fungi that infects plants and causes allergic diseases, infections, and toxic reactions in animals and humans[36]) into the noses of mice caused their nasal epithelial cells to release mucin and their nasal submucosa to swell. (The nasal as well as lung epithelial cells of these mice expressed OXGR1). OXGR1 gene knockout mice did not show these responses to the fungal toxin. The study also showed that a)Cysltr1 and Cysltr2 double gene knockout mice had full mucin release response to the toxin and b) Cstlr2 gene knockout mice had full submucosal swelling responses to the toxin but Csltr1 gene knockout mice did not show submucosal swelling responses to the toxin. The study concluded that LTE4's activation of OXGR1 controls key airway epithelial cell functions in mice and suggested that the inhibition of LTE4-induced OXGR1 activation may prove useful for treating asthma and other allergic and inflammatory disorders.[29] A subsequent study examined the effects of LTE4-OXGR1 on a certain type of tuft cell. When located in intestinal mucosa, these tuft cells are termed tuft cells but when located in the nasal respiratory mucosa they are termed solitary chemosensory cells and when located in the trachea they are termed brush cells.[37] Control mice that inhaled the mold Alternaria alternata, the American house dust mite Dermatophagoides farinae, or LTF4 developed increases in the number of their tracheal brush cells, release of the inflammation-promoting cytokine, interleukin 25, and lung inflammation whereas OXGR1 gene knockout mice did not show these responses. These findings indicate that the activation of OXGR1 regulates airway: brush cell numbers, interleukin 25 release, and inflammation.[21]
Associated with itaconate-regulated functions
A study reported in 2023 was the first and to date (2024) only study indicating that itaconate's actions are mediated by activating OXGR1. This study showed that itaconate stimulated the nasal secretion of mucus when applied to the noses of mice, reduced the number of Pseudomonas aeruginosa bacteria in their lung tissue and bronchoalveolar lavage fluid (i.e., airway washing) in mice injected intranasally with these bacteria, and stimulated cultured mouse respiratory epithelium cells to raise their cytosolic Ca2+ levels (an indicator of cell activation). Itaconate was unable to induce these responses in OXGR1 gene knockout mice or in the respiratory epithelial cells isolated from the OXGR1 gene knockout mice. The study concluded that the activation of OXGR1 by itaconate contributes to regulating the pulmonary innate immune response to Pseudomonas aeruginosa and might also do so in other bacterial infections.[8][16]
^ abcYamamoto T, Miyata J, Arita M, Fukunaga K, Kawana A (November 2019). "Current state and future prospect of the therapeutic strategy targeting cysteinyl leukotriene metabolism in asthma". Respiratory Investigation. 57 (6): 534–543. doi:10.1016/j.resinv.2019.08.003. PMID31591069.
^ abGrimm PR, Welling PA (September 2017). "α-Ketoglutarate drives electroneutral NaCl reabsorption in intercalated cells by activating a G-protein coupled receptor, Oxgr1". Current Opinion in Nephrology and Hypertension. 26 (5): 426–433. doi:10.1097/MNH.0000000000000353. PMID28771454.
^ abcdSasaki F, Yokomizo T (August 2019). "The leukotriene receptors as therapeutic targets of inflammatory diseases". International Immunology. 31 (9): 607–615. doi:10.1093/intimm/dxz044. PMID31135881.
^Lee DK, Nguyen T, Lynch KR, Cheng R, Vanti WB, Arkhitko O, Lewis T, Evans JF, George SR, O'Dowd BF (2001). "Discovery and mapping of ten novel G protein-coupled receptor genes". Gene. 275 (1): 83–91. doi:10.1016/s0378-1119(01)00651-5. PMID11574155.
^ abcYe D, Wang P, Chen LL, Guan KL, Xiong Y (March 2024). "Itaconate in host inflammation and defense". Trends in Endocrinology and Metabolism. doi:10.1016/j.tem.2024.02.004. PMID38448252.
^Parmentier CN, Fuerst E, McDonald J, Bowen H, Lee TH, Pease JE, Woszczek G, Cousins DJ (April 2012). "Human T(H)2 cells respond to cysteinyl leukotrienes through selective expression of cysteinyl leukotriene receptor 1". The Journal of Allergy and Clinical Immunology. 129 (4): 1136–42. doi:10.1016/j.jaci.2012.01.057. PMID22391114.
^ abPu S, Zhang J, Ren C, Zhou H, Wang Y, Wu Y, Yang S, Cao F, Zhou H (July 2023). "Montelukast prevents mice against carbon tetrachloride- and methionine-choline deficient diet-induced liver fibrosis: Reducing hepatic stellate cell activation and inflammation". Life Sciences. 325: 121772. doi:10.1016/j.lfs.2023.121772. PMID37178864.
^Shirasaki H, Kanaizumi E, Himi T (2016). "Expression and localization of OXGR1 in human nasal mucosa". Auris, Nasus, Larynx. 44 (2): 162–167. doi:10.1016/j.anl.2016.05.010. PMID27324180.
^Mittal R, Parrish JM, Soni M, Mittal J, Mathee K (October 2018). "Microbial otitis media: recent advancements in treatment, current challenges and opportunities". Journal of Medical Microbiology. 67 (10): 1417–1425. doi:10.1099/jmm.0.000810. PMID30084766.
Lee DK, Nguyen T, Lynch KR, Cheng R, Vanti WB, Arkhitko O, Lewis T, Evans JF, George SR, O'Dowd BF (Sep 2001). "Discovery and mapping of ten novel G protein-coupled receptor genes". Gene. 275 (1): 83–91. doi:10.1016/S0378-1119(01)00651-5. PMID11574155.
artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Netralitas artikel ini dipertanyakan. Diskusi terkait dapat dibaca pada the halaman pembicaraan. Jangan hapus pesan ini sampai kondisi untuk melak...
Kawasan-kawasan tradisional Katolik ditampilkan berwarna merah. Gereja Katolik di Swiss meliputi enam keuskupan dan dua keabasan teritorial, yang terdiri dari sekitar 3 juta umat Katolik, sekitar 38.6%[1] dari populasi Swiss. Keuskupan-keuskupannya adalah: Keuskupan Basel yang pemimpinnya adalah Uskup Felix Gmür Keuskupan Lausanne, Jenewa dan Fribourg yang pemimpinnya adalah Uskup Charles Morerod Keuskupan Chur yang pemimpinnya adalah Uskup Vitus Huonder Keuskupan Lugano yang pemimpi...
Kebudayaan MajiabangJangkauangeografisZhejiang, TiongkokPeriodeNeolitikum TiongkokTanggal5000–3350 SMDiikuti olehKebudayaan Liangzhu Kebudayaan Majiabang Hanzi: 馬家浜文化 Alih aksara Mandarin - Hanyu Pinyin: Mǎjiābāng wénhuà Kebudayaan Majiabang adalah kebudayaan neolitikum Tiongkok yang pernah ada di muara Sungai Yangtze, terutama di sekitar Danau Taihu dekat Shanghai dan Teluk Hangzhou utara. Kebudayaan ini menyebar ke seluruh Jiangsu dan Zhejiang utara pada sekitar tahun 5000 ...
Enes Kanter Freedom (lahir 20 Mei 1992) adalah pemain bola basket profesional berkebangsaan Turki yang bermain di New York Knicks di kompetisi National Basketball Association (NBA). Bertinggi badan 6 ft 11 in (2.11 m), Ia bermain di posisi Center. Enes Kanter FreedomKanter dengan Boston Celtics Maret 2021No. 00 – New York KnicksPosisiCenterLigaNBAInformasi pribadiLahir20 Mei 1992 (umur 31)Zürich, SwitzerlandKebangsaanTurkiTinggi6 ft 11 in (2,11 m)Berat245...
119th season of top-tier football league in Scotland Football league seasonScottish PremiershipSeason2024–25Dates3 August 2024 – 18 May 2025← 2023–24 2025–26 → The 2024–25 Scottish Premiership will be the twelfth season of the Scottish Premiership, the highest division of Scottish football, and the 128th edition overall of the top national league competition, not including one cancelled due to World War II. The season will begin on 3 August 2024.[1] Twelve teams contest ...
Not to be confused with Video Compact Cassette, better known as Video 2000. Magnetic tape-based consumer videocassette format Technicolor Compact Video Cassette (CVC)Siemens VE 45 Compact Video CassetteMedia typeMagnetic TapeEncodingNTSC, PAL, SECAMCapacity30 minutes, 45 minutes, 60 minutesRead mechanismHelical scanWrite mechanismHelical scanStandard525-line, 625-lineDeveloped byFunai, Technicolor SADimensions10.5 × 6.6 × 1.3 cmUsageHome movies, Video productionReleased1980 C...
Munich 1972 Généralités Sport Football Organisateur(s) CIO, FIFA Édition 5e Date du 7 février 1971au 3 juin 1972 Participants 78 pays répartis en 5 zones Épreuves 172 rencontres Navigation Mexico 1968 Montréal 1976 modifier Le tournoi pré-olympique de football de 1971-1972 a eu pour but de désigner les 14 nations qualifiées pour participer au tournoi final de football, disputé lors des Jeux olympiques de Munich en 1972. Médaillée d'or et tenante du titre, la Hongrie est qualifi...
Bus operator in West Yorkshire, England First West YorkshireA First West Yorkshire Wright Eclipse Gemini in the livery of the former West Yorkshire Road Car Company in LeedsParentFirstGroupFoundedFebruary 1998; 26 years ago (1998-02)HeadquartersHunslet, Leeds, West YorkshireEnglandService areaWest Yorkshire (some services overlap into other counties such as Greater Manchester, etc)[clarification needed]Service typeBus servicesDepots5Fleet882 (July 2017)Managing ...
Law relating to the Constitution of Australia For the story of how Australia evolved from a set of British colonies to an independent nation, see constitutional history of Australia, and for a discussion of Australia's federal system, see Federalism in Australia. For a briefer outline of the basic structure of the Constitution, see Commonwealth of Australia Constitution Act. For an overview of constitutional law generally, see constitutional law. This article is part of a series on thePolitic...
The foreign policy under the presidency of Woodrow Wilson deals with American diplomacy, and political, economic, military, and cultural relationships with the rest of the world from 1913 to 1921. Although Wilson had no experience in foreign policy, he made all the major decisions, usually with the top advisor Edward M. House. His foreign policy was based on his messianic philosophical belief that America had the utmost obligation to spread its principles while reflecting the 'truisms' of Ame...
1815 battle during the Neapolitan War This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (September 2014) (Learn how and when to remove this message) Battle of Castelfranco redirects here. For the 1805 battle, see battle of Castelfranco Veneto. Battle of the PanaroPart of the Neapolitan WarJoachim Murat helps the wounded general...
شارل السابع ملك فرنسا (بالفرنسية: Charles VII de France) معلومات شخصية الميلاد 22 فبراير 1403(1403-02-22)باريس الوفاة 22 يوليو 1461 (58 سنة) مكان الدفن كاتدرائية سان دوني الإقامة شينونبورج مواطنة فرنسا الديانة مسيحية الزوجة ماري أنجو (22 أبريل 1422–22 يوليو 1461) العشير أغنس سيرويل...
Die Artikel 1. Husaren-Regiment (Hessen–Kassel) und Husaren-Regiment „König Humbert von Italien“ (1. Kurhessisches) Nr. 13 überschneiden sich thematisch. Informationen, die du hier suchst, können sich also auch im anderen Artikel befinden.Gerne kannst du dich an der betreffenden Redundanzdiskussion beteiligen oder direkt dabei helfen, die Artikel zusammenzuführen oder besser voneinander abzugrenzen (→ Anleitung). Erster Regimentschef: König Umberto I. von Italien Das H...
One of the Atlantic graveyards during the Second World War Torpedo AlleyPart of World War II, Battle of the AtlanticDate1942–1945Locationoff North Carolina, Mid Atlantic OceanResult German victoryBelligerents United States United Kingdom Nazi GermanyCommanders and leaders Harold Rainsford Stark Ernest King Royal Ingersoll Karl Dönitz Robert-Richard Zapp Rolf MützelburgCasualties and losses ~5,000 killed397 ships sunk[1] 100 killed40 captured3 submarines sunk[2...
ساندرا كلوسل معلومات شخصية الميلاد 22 يونيو 1979 (العمر 45 سنة)أوبركيرش، بادن-فورتمبيرغ، ألمانيا الغربية الطول 1.73 م (5 قدم 8 بوصة) الإقامة بادن-فورتمبيرغ الجنسية ألمانيا استعمال اليد اليد اليمنى الحياة العملية الفرق منتخب ألمانيا لكأس فيد (2005–) بداية الاحتراف...
Leudeville La mairie. Blason Administration Pays France Région Île-de-France Département Essonne Arrondissement Palaiseau Intercommunalité Communauté de communes du Val d'Essonne Maire Mandat Jean-Pierre Lecomte 2020-2026 Code postal 91630 Code commune 91332 Démographie Gentilé Leudevillois Populationmunicipale 1 559 hab. (2021 ) Densité 199 hab./km2 Géographie Coordonnées 48° 33′ 55″ nord, 2° 19′ 34″ est Altitude Min. 74 ...
Siege of Coimbra (1117)Part of ReconquistaMedieval gateway in Coimbra.Date2–22 June 1117LocationCoimbraResult Portuguese victory[1][2]Belligerents Almoravids County of PortugalCommanders and leaders Ali ibn Yusuf Governor of Cordoba Yahya ibn Tashfin[3] Theresa, Countess of PortugalStrength Unknown UnknownCasualties and losses Unknown Thousands dead vteBattles in the Reconquista 8th century Covadonga 1st Roncevaux Pass Burbia River Orbieu River Lutos Las Babias Río ...
List of events that occurred in February 1909 1909 January February March April May June July August September October November December << February 1909 >> Su Mo Tu We Th Fr Sa 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 February 17, 1909: Geronimo, Chief of the Apaches, dead at 79 February 22, 1909: The Great White Fleet completes its round the world tour. The following events occurred in February 1909: February 1, 1909 (Monday) In...
BigfootMakhluk misteriusNamaBigfootNama lainSasquatchKelompokKriptidSubkelompokKriptid hominoidCiriBerbadan besar, berbulu, mirip KeraMakhluk serupaYeti, Yeren, YowieAsalNegaraAmerika Serikat, KanadaDaerahBarat Daya PasifikHabitatHutan Bigfoot (arti harfiah: kaki besar) adalah nama bagi makhluk misterius mirip kera yang menghuni hutan-hutan di kawasan Barat Daya Pasifik, Amerika Utara. Penampakan Bigfoot telah dilaporkan di daerah Kanada dan Amerika Utara sejak abad 19-an. Menurut laporan pen...