RAC1

RAC1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesRAC1, MIG5, Rac-1, TC-25, p21-Rac1, ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1), Rac family small GTPase 1, MRD48
External IDsOMIM: 602048; MGI: 97845; HomoloGene: 69035; GeneCards: RAC1; OMA:RAC1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_198829
NM_006908
NM_018890

NM_009007
NM_001347530

RefSeq (protein)

NP_008839
NP_061485

NP_001334459
NP_033033

Location (UCSC)Chr 7: 6.37 – 6.4 MbChr 5: 143.49 – 143.51 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Ras-related C3 botulinum toxin substrate 1, is a protein that in humans is encoded by the RAC1 gene.[5][6] This gene can produce a variety of alternatively spliced versions of the Rac1 protein, which appear to carry out different functions.[7]

Function

Rac1 is a small (~21 kDa) signalling G protein (more specifically a GTPase), and is a member of the Rac subfamily of the family Rho family of GTPases. Members of this superfamily appear to regulate a diverse array of cellular events, including the control of GLUT4[8][9] translocation to glucose uptake, cell growth, cytoskeletal reorganization, antimicrobial cytotoxicity,[10] and the activation of protein kinases.[11]

Rac1 is a pleiotropic regulator of many cellular processes, including the cell cycle, cell-cell adhesion, motility (through the actin network), and of epithelial differentiation (proposed to be necessary for maintaining epidermal stem cells).

Role in glucose transport

Rac1 is expressed in significant amounts in insulin sensitive tissues, such as adipose tissue and skeletal muscle. Here Rac1 regulated the translocation of glucose transporting GLUT4 vesicles from intracellular compartments to the plasma membrane.[9][12][13] In response to insulin, this allows for blood glucose to enter the cell to lower blood glucose. In conditions of obesity and type 2 diabetes, Rac1 signalling in skeletal muscle is dysfunctional, suggesting that Rac1 contributes to the progression of the disease. Rac1 protein is also necessary for glucose uptake in skeletal muscle activated by exercise[8][14] and muscle stretching.[15]

Clinical significance

Cancer

Along with other subfamily of Rac and Rho proteins, they exert an important regulatory role specifically in cell motility and cell growth. Rac1 has ubiquitous tissue expression, and drives cell motility by formation of lamellipodia.[16] In order for cancer cells to grow and invade local and distant tissues, deregulation of cell motility is one of the hallmark events in cancer cell invasion and metastasis.[17] Overexpression of a constitutively active Rac1 V12 in mice caused a tumour that is phenotypically indistinguishable from human Kaposi's sarcoma.[18] Activating or gain-of-function mutations of Rac1 are shown to play active roles in promoting mesenchymal-type of cell movement assisted by NEDD9 and DOCK3 protein complex.[19] Such abnormal cell motility may result in epithelial mesenchymal transition (EMT) – a driving mechanism for tumour metastasis as well as drug-resistant tumour relapse.[20][21]

Activating mutations in Rac1 have been recently discovered in large-scale genomic studies involving melanoma[22][23][24] and non-small cell lung cancer.[25] As a result, Rac1 is considered a therapeutic target for many of these diseases.[26]

Other diseases

Dominant negative or constitutively active germline RAC1 mutations cause diverse phenotypes that have been grouped together as Mental Retardation Type 48.[27] Most mutations cause microcephaly while some specific changes appear to result in macrocephaly.

As a drug target

A few recent studies have also exploited targeted therapy to suppress tumour growth by pharmacological inhibition of Rac1 activity in metastatic melanoma and liver cancer as well as in human breast cancer.[28][29][30] For example, Rac1-dependent pathway inhibition resulted in the reversal of tumour cell phenotypes, suggesting Rac1 as a predictive marker and therapeutic target for trastuzumab-resistant breast cancer.[29] However, given Rac1's role in glucose transport, drugs that inhibit Rac1 could potentially be harmful to glucose homeostasis.

Interactions

RAC1 has been shown to interact with:

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000136238Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000001847Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (October 1989). "rac, a novel ras-related family of proteins that are botulinum toxin substrates". The Journal of Biological Chemistry. 264 (28): 16378–16382. doi:10.1016/S0021-9258(19)84716-6. PMID 2674130.
  6. ^ Jordan P, Brazåo R, Boavida MG, Gespach C, Chastre E (November 1999). "Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors". Oncogene. 18 (48): 6835–6839. doi:10.1038/sj.onc.1203233. PMID 10597294.
  7. ^ Zhou C, Licciulli S, Avila JL, Cho M, Troutman S, Jiang P, et al. (February 2013). "The Rac1 splice form Rac1b promotes K-ras-induced lung tumorigenesis". Oncogene. 32 (7): 903–909. doi:10.1038/onc.2012.99. PMC 3384754. PMID 22430205.
  8. ^ a b Sylow L, Nielsen IL, Kleinert M, Møller LL, Ploug T, Schjerling P, et al. (September 2016). "Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice". The Journal of Physiology. 594 (17): 4997–5008. doi:10.1113/JP272039. PMC 5009787. PMID 27061726.
  9. ^ a b Ueda S, Kitazawa S, Ishida K, Nishikawa Y, Matsui M, Matsumoto H, et al. (July 2010). "Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma". FASEB Journal. 24 (7): 2254–2261. doi:10.1096/fj.09-137380. PMC 4183928. PMID 20203090.
  10. ^ Xiang RF, Stack D, Huston SM, Li SS, Ogbomo H, Kyei SK, et al. (March 2016). "Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct Cytotoxicity against Cryptococcus neoformans". The Journal of Biological Chemistry. 291 (13): 6912–6922. doi:10.1074/jbc.M115.681544. PMC 4807276. PMID 26867574.
  11. ^ Ridley AJ (October 2006). "Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking". Trends in Cell Biology. 16 (10): 522–529. doi:10.1016/j.tcb.2006.08.006. PMID 16949823.
  12. ^ Sylow L, Kleinert M, Pehmøller C, Prats C, Chiu TT, Klip A, et al. (February 2014). "Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance". Cellular Signalling. 26 (2): 323–331. doi:10.1016/j.cellsig.2013.11.007. PMID 24216610.
  13. ^ Sylow L, Jensen TE, Kleinert M, Højlund K, Kiens B, Wojtaszewski J, et al. (June 2013). "Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle". Diabetes. 62 (6): 1865–1875. doi:10.2337/db12-1148. PMC 3661612. PMID 23423567.
  14. ^ Sylow L, Jensen TE, Kleinert M, Mouatt JR, Maarbjerg SJ, Jeppesen J, et al. (April 2013). "Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle". Diabetes. 62 (4): 1139–1151. doi:10.2337/db12-0491. PMC 3609592. PMID 23274900.
  15. ^ Sylow L, Møller LL, Kleinert M, Richter EA, Jensen TE (February 2015). "Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1". The Journal of Physiology. 593 (3): 645–656. doi:10.1113/jphysiol.2014.284281. PMC 4324711. PMID 25416624.
  16. ^ Parri M, Chiarugi P (September 2010). "Rac and Rho GTPases in cancer cell motility control". Cell Communication and Signaling. 8 (23): 23. doi:10.1186/1478-811x-8-23. PMC 2941746. PMID 20822528.
  17. ^ Hanahan D, Weinberg RA (March 2011). "Hallmarks of cancer: the next generation". Cell. 144 (5): 646–674. doi:10.1016/j.cell.2011.02.013. PMID 21376230.
  18. ^ Ma Q, Cavallin LE, Yan B, Zhu S, Duran EM, Wang H, et al. (May 2009). "Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi's sarcoma". Proceedings of the National Academy of Sciences of the United States of America. 106 (21): 8683–8688. Bibcode:2009PNAS..106.8683M. doi:10.1073/pnas.0812688106. PMC 2679580. PMID 19429708.
  19. ^ Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, et al. (October 2008). "Rac activation and inactivation control plasticity of tumor cell movement". Cell. 135 (3): 510–523. doi:10.1016/j.cell.2008.09.043. PMID 18984162. S2CID 5745856.
  20. ^ Stallings-Mann ML, Waldmann J, Zhang Y, Miller E, Gauthier ML, Visscher DW, et al. (July 2012). "Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression". Science Translational Medicine. 4 (142): 142ra95. doi:10.1126/scitranslmed.3004062. PMC 3733503. PMID 22786680.
  21. ^ Yang WH, Lan HY, Huang CH, Tai SK, Tzeng CH, Kao SY, et al. (March 2012). "RAC1 activation mediates Twist1-induced cancer cell migration". Nature Cell Biology. 14 (4): 366–374. doi:10.1038/ncb2455. PMID 22407364. S2CID 4755216.
  22. ^ Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. (July 2012). "A landscape of driver mutations in melanoma". Cell. 150 (2): 251–263. doi:10.1016/j.cell.2012.06.024. PMC 3600117. PMID 22817889.
  23. ^ Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, et al. (September 2012). "Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma". Nature Genetics. 44 (9): 1006–1014. doi:10.1038/ng.2359. PMC 3432702. PMID 22842228.
  24. ^ Bauer NN, Chen YW, Samant RS, Shevde LA, Fodstad O (November 2007). "Rac1 activity regulates proliferation of aggressive metastatic melanoma". Experimental Cell Research. 313 (18): 3832–3839. doi:10.1016/j.yexcr.2007.08.017. PMID 17904119.
  25. ^ Stallings-Mann ML, Waldmann J, Zhang Y, Miller E, Gauthier ML, Visscher DW, et al. (July 2012). "Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression". Science Translational Medicine. 4 (142): 142ra95. doi:10.1126/scitranslmed.3004062. PMC 3733503. PMID 22786680.
  26. ^ McAllister SS (July 2012). "Got a light? Illuminating lung cancer". Science Translational Medicine. 4 (142): 142fs22. doi:10.1126/scitranslmed.3004446. PMID 22786678. S2CID 12093516.
  27. ^ Reijnders MR, Ansor NM, Kousi M, Yue WW, Tan PL, Clarkson K, et al. (September 2017). "RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes". American Journal of Human Genetics. 101 (3): 466–477. doi:10.1016/j.ajhg.2017.08.007. PMC 5591022. PMID 28886345.
  28. ^ Chen QY, Xu LQ, Jiao DM, Yao QH, Wang YY, Hu HZ, et al. (November 2011). "Silencing of Rac1 modifies lung cancer cell migration, invasion and actin cytoskeleton rearrangements and enhances chemosensitivity to antitumor drugs". International Journal of Molecular Medicine. 28 (5): 769–776. doi:10.3892/ijmm.2011.775. PMID 21837360.
  29. ^ a b Dokmanovic M, Hirsch DS, Shen Y, Wu WJ (June 2009). "Rac1 contributes to trastuzumab resistance of breast cancer cells: Rac1 as a potential therapeutic target for the treatment of trastuzumab-resistant breast cancer". Molecular Cancer Therapeutics. 8 (6): 1557–1569. doi:10.1158/1535-7163.mct-09-0140. PMID 19509242.
  30. ^ Liu S, Yu M, He Y, Xiao L, Wang F, Song C, et al. (June 2008). "Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway". Hepatology. 47 (6): 1964–1973. doi:10.1002/hep.22240. PMID 18506888. S2CID 21106205.
  31. ^ a b Shin OH, Exton JH (August 2001). "Differential binding of arfaptin 2/POR1 to ADP-ribosylation factors and Rac1". Biochemical and Biophysical Research Communications. 285 (5): 1267–1273. doi:10.1006/bbrc.2001.5330. PMID 11478794.
  32. ^ Van Aelst L, Joneson T, Bar-Sagi D (August 1996). "Identification of a novel Rac1-interacting protein involved in membrane ruffling". The EMBO Journal. 15 (15): 3778–3786. doi:10.1002/j.1460-2075.1996.tb00751.x. PMC 452058. PMID 8670882.
  33. ^ Tarricone C, Xiao B, Justin N, Walker PA, Rittinger K, Gamblin SJ, et al. (May 2001). "The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways". Nature. 411 (6834): 215–219. doi:10.1038/35075620. PMID 11346801. S2CID 4324211.
  34. ^ Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
  35. ^ Grizot S, Fauré J, Fieschi F, Vignais PV, Dagher MC, Pebay-Peyroula E (August 2001). "Crystal structure of the Rac1-RhoGDI complex involved in nadph oxidase activation". Biochemistry. 40 (34): 10007–10013. doi:10.1021/bi010288k. PMID 11513578.
  36. ^ Lian LY, Barsukov I, Golovanov AP, Hawkins DI, Badii R, Sze KH, et al. (January 2000). "Mapping the binding site for the GTP-binding protein Rac-1 on its inhibitor RhoGDI-1". Structure. 8 (1): 47–55. doi:10.1016/S0969-2126(00)00080-0. PMID 10673424.
  37. ^ Gorvel JP, Chang TC, Boretto J, Azuma T, Chavrier P (January 1998). "Differential properties of D4/LyGDI versus RhoGDI: phosphorylation and rho GTPase selectivity". FEBS Letters. 422 (2): 269–273. doi:10.1016/S0014-5793(98)00020-9. PMID 9490022. S2CID 10817327.
  38. ^ Di-Poï N, Fauré J, Grizot S, Molnár G, Pick E, Dagher MC (August 2001). "Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex". Biochemistry. 40 (34): 10014–10022. doi:10.1021/bi010289c. PMID 11513579.
  39. ^ Fauré J, Dagher MC (May 2001). "Interactions between Rho GTPases and Rho GDP dissociation inhibitor (Rho-GDI)". Biochimie. 83 (5): 409–414. doi:10.1016/S0300-9084(01)01263-9. PMID 11368848.
  40. ^ Miki H, Yamaguchi H, Suetsugu S, Takenawa T (December 2000). "IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling". Nature. 408 (6813): 732–735. Bibcode:2000Natur.408..732M. doi:10.1038/35047107. PMID 11130076. S2CID 4426046.
  41. ^ Westendorf JJ (December 2001). "The formin/diaphanous-related protein, FHOS, interacts with Rac1 and activates transcription from the serum response element". The Journal of Biological Chemistry. 276 (49): 46453–46459. doi:10.1074/jbc.M105162200. PMID 11590143.
  42. ^ Yayoshi-Yamamoto S, Taniuchi I, Watanabe T (September 2000). "FRL, a novel formin-related protein, binds to Rac and regulates cell motility and survival of macrophages". Molecular and Cellular Biology. 20 (18): 6872–6881. doi:10.1128/MCB.20.18.6872-6881.2000. PMC 86228. PMID 10958683.
  43. ^ a b Zhang B, Chernoff J, Zheng Y (April 1998). "Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA". The Journal of Biological Chemistry. 273 (15): 8776–8782. doi:10.1074/jbc.273.15.8776. PMID 9535855.
  44. ^ Kuroda S, Fukata M, Kobayashi K, Nakafuku M, Nomura N, Iwamatsu A, et al. (September 1996). "Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1". The Journal of Biological Chemistry. 271 (38): 23363–23367. doi:10.1074/jbc.271.38.23363. PMID 8798539.
  45. ^ Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, et al. (June 2002). "Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170". Cell. 109 (7): 873–885. doi:10.1016/S0092-8674(02)00800-0. PMID 12110184. S2CID 15158637.
  46. ^ Hart MJ, Callow MG, Souza B, Polakis P (June 1996). "IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs". The EMBO Journal. 15 (12): 2997–3005. doi:10.1002/j.1460-2075.1996.tb00663.x. PMC 450241. PMID 8670801.
  47. ^ Brill S, Li S, Lyman CW, Church DM, Wasmuth JJ, Weissbach L, et al. (September 1996). "The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases". Molecular and Cellular Biology. 16 (9): 4869–4878. doi:10.1128/mcb.16.9.4869. PMC 231489. PMID 8756646.
  48. ^ Jefferies C, Bowie A, Brady G, Cooke EL, Li X, O'Neill LA (July 2001). "Transactivation by the p65 subunit of NF-kappaB in response to interleukin-1 (IL-1) involves MyD88, IL-1 receptor-associated kinase 1, TRAF-6, and Rac1". Molecular and Cellular Biology. 21 (14): 4544–4552. doi:10.1128/MCB.21.14.4544-4552.2001. PMC 87113. PMID 11416133.
  49. ^ Shimizu M, Wang W, Walch ET, Dunne PW, Epstein HF (June 2000). "Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase". FEBS Letters. 475 (3): 273–277. doi:10.1016/S0014-5793(00)01692-6. PMID 10869570. S2CID 46238883.
  50. ^ Kitamura Y, Kitamura T, Sakaue H, Maeda T, Ueno H, Nishio S, et al. (March 1997). "Interaction of Nck-associated protein 1 with activated GTP-binding protein Rac". The Biochemical Journal. 322 (Pt 3): 873–878. doi:10.1042/bj3220873. PMC 1218269. PMID 9148763.
  51. ^ Katoh H, Negishi M (July 2003). "RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo". Nature. 424 (6947): 461–464. Bibcode:2003Natur.424..461K. doi:10.1038/nature01817. PMID 12879077. S2CID 4411133.
  52. ^ Seoh ML, Ng CH, Yong J, Lim L, Leung T (March 2003). "ArhGAP15, a novel human RacGAP protein with GTPase binding property". FEBS Letters. 539 (1–3): 131–137. doi:10.1016/S0014-5793(03)00213-8. PMID 12650940. S2CID 27574424.
  53. ^ a b Noda Y, Takeya R, Ohno S, Naito S, Ito T, Sumimoto H (February 2001). "Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C". Genes to Cells. 6 (2): 107–119. doi:10.1046/j.1365-2443.2001.00404.x. PMID 11260256. S2CID 8789941.
  54. ^ Qiu RG, Abo A, Steven Martin G (June 2000). "A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation". Current Biology. 10 (12): 697–707. Bibcode:2000CBio...10..697Q. doi:10.1016/S0960-9822(00)00535-2. PMID 10873802. S2CID 14825707.
  55. ^ Zhao C, Ma H, Bossy-Wetzel E, Lipton SA, Zhang Z, Feng GS (September 2003). "GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2". The Journal of Biological Chemistry. 278 (36): 34641–34653. doi:10.1074/jbc.M304594200. PMID 12819203.
  56. ^ Moon SY, Zang H, Zheng Y (February 2003). "Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP". The Journal of Biological Chemistry. 278 (6): 4151–4159. doi:10.1074/jbc.M207789200. PMID 12454018.
  57. ^ Simon AR, Vikis HG, Stewart S, Fanburg BL, Cochran BH, Guan KL (October 2000). "Regulation of STAT3 by direct binding to the Rac1 GTPase". Science. 290 (5489): 144–147. Bibcode:2000Sci...290..144S. doi:10.1126/science.290.5489.144. PMID 11021801.
  58. ^ Worthylake DK, Rossman KL, Sondek J (December 2000). "Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1". Nature. 408 (6813): 682–688. Bibcode:2000Natur.408..682W. doi:10.1038/35047014. PMID 11130063. S2CID 4429919.
  59. ^ Gao Y, Xing J, Streuli M, Leto TL, Zheng Y (December 2001). "Trp(56) of rac1 specifies interaction with a subset of guanine nucleotide exchange factors". The Journal of Biological Chemistry. 276 (50): 47530–47541. doi:10.1074/jbc.M108865200. PMID 11595749.

Further reading