Firoozbakht's conjecture
Bound on the gaps between prime numbers
Prime gap function
In number theory , Firoozbakht's conjecture (or the Firoozbakht conjecture[ 1] [ 2] ) is a conjecture about the distribution of prime numbers . It is named after the Iranian mathematician Farideh Firoozbakht who stated it in 1982.
The conjecture states that
p
n
1
/
n
{\displaystyle p_{n}^{1/n}}
(where
p
n
{\displaystyle p_{n}}
is the n th prime) is a strictly decreasing function of n , i.e.,
p
n
+
1
n
+
1
<
p
n
n
for all
n
≥ ≥ -->
1.
{\displaystyle {\sqrt[{n+1}]{p_{n+1}}}<{\sqrt[{n}]{p_{n}}}\qquad {\text{ for all }}n\geq 1.}
Equivalently:
p
n
+
1
<
p
n
1
+
1
n
,
{\displaystyle p_{n+1}<p_{n}^{1+{\frac {1}{n}}},}
p
n
+
1
n
<
p
n
n
+
1
,
or
{\displaystyle p_{n+1}^{n}<p_{n}^{n+1},{\text{ or }}}
(
p
n
+
1
p
n
)
n
<
p
n
.
{\displaystyle \left({\frac {p_{n+1}}{p_{n}}}\right)^{n}<p_{n}.}
see OEIS : A182134 , OEIS : A246782 .
By using a table of maximal gaps , Farideh Firoozbakht verified her conjecture up to 4.444× 10 12 .[ 2] Now with more extensive tables of maximal gaps, the conjecture has been verified for all primes below 264 ≈ 1.84× 1019 .[ 3] [ 4] [ 5]
If the conjecture were true, then the prime gap function
g
n
=
p
n
+
1
− − -->
p
n
{\displaystyle g_{n}=p_{n+1}-p_{n}}
would satisfy:[ 6]
g
n
<
(
log
-->
p
n
)
2
− − -->
log
-->
p
n
for all
n
>
4.
{\displaystyle g_{n}<(\log p_{n})^{2}-\log p_{n}\qquad {\text{ for all }}n>4.}
Moreover:[ 7]
g
n
<
(
log
-->
p
n
)
2
− − -->
log
-->
p
n
− − -->
1
for all
n
>
9
,
{\displaystyle g_{n}<(\log p_{n})^{2}-\log p_{n}-1\qquad {\text{ for all }}n>9,}
see also OEIS : A111943 . This is among the strongest upper bounds conjectured for prime gaps, even somewhat stronger than the Cramér and Shanks conjectures .[ 4] It implies a strong form of Cramér's conjecture and is hence inconsistent with the heuristics of Granville and Pintz [ 8] [ 9] [ 10] and of Maier [ 11] [ 12] which suggest that
g
n
>
2
− − -->
ε ε -->
e
γ γ -->
(
log
-->
p
n
)
2
≈ ≈ -->
1.1229
(
log
-->
p
n
)
2
,
{\displaystyle g_{n}>{\frac {2-\varepsilon }{e^{\gamma }}}(\log p_{n})^{2}\approx 1.1229(\log p_{n})^{2},}
occurs infinitely often for any
ε ε -->
>
0
,
{\displaystyle \varepsilon >0,}
where
γ γ -->
{\displaystyle \gamma }
denotes the Euler–Mascheroni constant .
Three related conjectures (see the comments of OEIS : A182514 ) are variants of Firoozbakht's. Forgues notes that Firoozbakht's can be written
(
log
-->
p
n
+
1
log
-->
p
n
)
n
<
(
1
+
1
n
)
n
,
{\displaystyle \left({\frac {\log p_{n+1}}{\log p_{n}}}\right)^{n}<\left(1+{\frac {1}{n}}\right)^{n},}
where the right hand side is the well-known expression which reaches Euler's number in the limit
n
→ → -->
∞ ∞ -->
{\displaystyle n\to \infty }
, suggesting the slightly weaker conjecture
(
log
-->
p
n
+
1
log
-->
p
n
)
n
<
e
.
{\displaystyle \left({\frac {\log p_{n+1}}{\log p_{n}}}\right)^{n}<e.}
Nicholson and Farhadian[ 13] [ 14] give two stronger versions of Firoozbakht's conjecture which can be summarized as:
(
p
n
+
1
p
n
)
n
<
p
n
log
-->
n
log
-->
p
n
<
n
log
-->
n
<
p
n
for all
n
>
5
,
{\displaystyle \left({\frac {p_{n+1}}{p_{n}}}\right)^{n}<{\frac {p_{n}\log n}{\log p_{n}}}<n\log n<p_{n}\qquad {\text{ for all }}n>5,}
where the right-hand inequality is Firoozbakht's, the middle is Nicholson's (since
n
log
-->
n
<
p
n
{\displaystyle n\log n<p_{n}}
; see Prime number theorem § Non-asymptotic bounds on the prime-counting function ), and the left-hand inequality is Farhadian's (since
p
n
log
-->
p
n
<
n
{\displaystyle {\frac {p_{n}}{\log p_{n}}}<n}
; see Prime-counting function § Inequalities ).
All have been verified to 264 .[ 5]
See also
Notes
^ Ribenboim, Paulo (2004). The Little Book of Bigger Primes (Second ed.). Springer-Verlag. p. 185 . ISBN 978-0-387-20169-6 .
^ a b Rivera, Carlos. "Conjecture 30. The Firoozbakht Conjecture" . Retrieved 22 August 2012 .
^ Oliveira e Silva, Tomás (December 30, 2015). "Gaps between consecutive primes" . Retrieved 2024-11-01 .
^ a b Kourbatov, Alexei. "Prime Gaps: Firoozbakht Conjecture" .
^ a b Visser, Matt (August 2019). "Verifying the Firoozbakht, Nicholson, and Farhadian conjectures up to the 81st maximal prime gap" . Mathematics . 7 (8) 691. arXiv :1904.00499 . doi :10.3390/math7080691 .
^ Sinha, Nilotpal Kanti (2010), "On a new property of primes that leads to a generalization of Cramer's conjecture", arXiv :1010.1399 [math.NT ] .
^ Kourbatov, Alexei (2015), "Upper bounds for prime gaps related to Firoozbakht's conjecture" , Journal of Integer Sequences , 18 (Article 15.11.2), arXiv :1506.03042 , MR 3436186 , Zbl 1390.11105 .
^ Granville, A. (1995), "Harald Cramér and the distribution of prime numbers" (PDF) , Scandinavian Actuarial Journal , 1 : 12–28, doi :10.1080/03461238.1995.10413946 , MR 1349149 , Zbl 0833.01018 , archived from the original (PDF) on 2016-05-02 .
^ Granville, Andrew (1995), "Unexpected irregularities in the distribution of prime numbers" (PDF) , Proceedings of the International Congress of Mathematicians , 1 : 388–399, doi :10.1007/978-3-0348-9078-6_32 , ISBN 978-3-0348-9897-3 , Zbl 0843.11043 .
^ Pintz, János (2007), "Cramér vs. Cramér: On Cramér's probabilistic model for primes" , Funct. Approx. Comment. Math. , 37 (2): 232–471, doi :10.7169/facm/1229619660 , MR 2363833 , S2CID 120236707 , Zbl 1226.11096
^ Adleman, Leonard M.; McCurley, Kevin S. (1994), "Open problems in number-theoretic complexity. II" , in Adleman, Leonard M.; Huang, Ming-Deh (eds.), Algorithmic Number Theory: Proceedings of the First International Symposium (ANTS-I) held at Cornell University, Ithaca, New York, May 6–9, 1994 , Lecture Notes in Computer Science, vol. 877, Berlin: Springer, pp. 291–322, doi :10.1007/3-540-58691-1_70 , ISBN 3-540-58691-1 , MR 1322733
^ Maier, Helmut (1985), "Primes in short intervals" , The Michigan Mathematical Journal , 32 (2): 221–225, doi :10.1307/mmj/1029003189 , ISSN 0026-2285 , MR 0783576 , Zbl 0569.10023
^ Rivera, Carlos (2016). "Conjecture 78: Pn ^(Pn+1 /Pn )^n<=n^Pn " . PrimePuzzles.net . Retrieved 2024-11-01 .
^ Farhadian, Reza (October 2017). "On a New Inequality Related to Consecutive Primes" . Acta Universitatis Danubius. Œconomica . 13 (5): 236–242. Archived from the original on 2018-04-19.
References
Ribenboim, Paulo (2004). The Little Book of Bigger Primes (Second ed.). Springer-Verlag. ISBN 0-387-20169-6 .
Riesel, Hans (1985). Prime Numbers and Computer Methods for Factorization (Second ed.). Birkhauser. ISBN 3-7643-3291-3 .
Mathematics in Iran
Mathematicians
Before 20th Century Modern
Prize Recipients
Organizations Institutions
By formula By integer sequence By property Base -dependentPatterns
k -tuples
Twin (p , p + 2 )
Triplet (p , p + 2 or p + 4, p + 6 )
Quadruplet (p , p + 2, p + 6, p + 8 )
Cousin (p , p + 4 )
Sexy (p , p + 6 )
Arithmetic progression (p + a·n , n = 0, 1, 2, 3, ... )
Balanced (consecutive p − n , p , p + n )
By size Complex numbers Composite numbers Related topics First 60 primes