Gilbreath's conjecture

Gilbreath's conjecture is a conjecture in number theory regarding the sequences generated by applying the forward difference operator to consecutive prime numbers and leaving the results unsigned, and then repeating this process on consecutive terms in the resulting sequence, and so forth. The statement is named after Norman L. Gilbreath who, in 1958, presented it to the mathematical community after observing the pattern by chance while doing arithmetic on a napkin.[1] In 1878, eighty years before Gilbreath's discovery, François Proth had, however, published the same observations along with an attempted proof, which was later shown to be incorrect.[1]

Motivating arithmetic

Gilbreath observed a pattern while playing with the ordered sequence of prime numbers

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

Computing the absolute value of the difference between term n + 1 and term n in this sequence yields the sequence

1, 2, 2, 4, 2, 4, 2, 4, 6, 2, ...

If the same calculation is done for the terms in this new sequence, and the sequence that is the outcome of this process, and again ad infinitum for each sequence that is the output of such a calculation, the following five sequences in this list are

1, 0, 2, 2, 2, 2, 2, 2, 4, ...
1, 2, 0, 0, 0, 0, 0, 2, ...
1, 2, 0, 0, 0, 0, 2, ...
1, 2, 0, 0, 0, 2, ...
1, 2, 0, 0, 2, ...

What Gilbreath—and François Proth before him—noticed is that the first term in each series of differences appears to be 1.

The conjecture

Stating Gilbreath's observation formally is significantly easier to do after devising a notation for the sequences in the previous section. Toward this end, let denote the ordered sequence of prime numbers, and define each term in the sequence by

where is positive. Also, for each integer greater than 1, let the terms in be given by

Gilbreath's conjecture states that every term in the sequence for positive is equal to 1.

Verification and attempted proofs

François Proth released what he believed to be a proof of the statement that was later shown to be flawed. Andrew Odlyzko verified that is equal to 1 for in 1993,[2] but the conjecture remains an open problem. Instead of evaluating n rows, Odlyzko evaluated 635 rows and established that the 635th row started with a 1 and continued with only 0s and 2s for the next n numbers. This implies that the next n rows begin with a 1.

Generalizations

In 1980, Martin Gardner published a conjecture by Hallard Croft that stated that the property of Gilbreath's conjecture (having a 1 in the first term of each difference sequence) should hold more generally for every sequence that begins with 2, subsequently contains only odd numbers, and has a sufficiently low bound on the gaps between consecutive elements in the sequence.[3] This conjecture has also been repeated by later authors.[4][5] However, it is false: for every initial subsequence of 2 and odd numbers, and every non-constant growth rate, there is a continuation of the subsequence by odd numbers whose gaps obey the growth rate but whose difference sequences fail to begin with 1 infinitely often.[6] Odlyzko (1993) is more careful, writing of certain heuristic reasons for believing Gilbreath's conjecture that "the arguments above apply to many other sequences in which the first element is a 1, the others even, and where the gaps between consecutive elements are not too large and are sufficiently random."[2][7] However, he does not give a formal definition of what "sufficiently random" means.

See also

References

  1. ^ a b Caldwell, Chris. "The Prime Glossary: Gilbreath's conjecture". The Prime Pages. Archived from the original on 2012-03-24. Retrieved 2008-03-07..
  2. ^ a b Odlyzko, A. M. (1993). "Iterated absolute values of differences of consecutive primes". Mathematics of Computation. 61 (203): 373–380. doi:10.2307/2152962. JSTOR 2152962. Zbl 0781.11037. Archived from the original on 2011-09-27. Retrieved 2006-05-25..
  3. ^ Gardner, Martin (December 1980). "Patterns in primes are a clue to the strong law of small numbers". Mathematical Games. Scientific American. Vol. 243, no. 6. pp. 18–28.
  4. ^ Guy, Richard K. (2004). Unsolved Problems in Number Theory. Problem Books in Mathematics (3rd ed.). Springer-Verlag. p. 42. ISBN 0-387-20860-7. Zbl 1058.11001.
  5. ^ Darling, David (2004). "Gilbreath's conjecture". The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. John Wiley & Sons. pp. 133–134. ISBN 9780471667001. Archived from the original on 2016-05-05. Retrieved 2015-04-21.
  6. ^ Eppstein, David (February 20, 2011). "Anti-Gilbreath sequences". 11011110. Archived from the original on April 12, 2017. Retrieved April 12, 2017.
  7. ^ Chase, Zachary (2023). "A random analogue of Gilbreath's conjecture". Math. Ann. 388 (3): 2611–2625. arXiv:2005.00530. doi:10.1007/s00208-023-02579-w.

Read other articles:

Gustav JagerGustav Jäger pada tahun 1884, mengenakan Normalkleidung wolnyaLahir(1832-06-23)23 Juni 1832Bürg, Neuenstadt am Kocher, JermanMeninggal13 Mei 1917(1917-05-13) (umur 84)Stuttgart, JermanKebangsaanJermanKarier ilmiahBidangbiologi, entomologi, kebersihan Gustav Jäger (23 Juni 1832 – 13 Mei 1917) adalah seorang naturalis Jerman. Biografi Ia lahir di Pfarrhaus, desa Bürg, Neuenstadt am Kocher, Württemberg. Setelah mempelajari kedokteran di Tübingen, ia menjadi pengajar zoo...

 

Pour l'article traitant du type de match sur lequel est basé le PPV, voir Money in the Bank Ladder match. Money in the BankLogo officiel de WWE Money in the Bank 2010Main event Sheamus contre John CenaThème musical Money de I Fight Dragons[1]InformationsFédération World Wrestling EntertainmentDivision Raw et SmackDownDate 18 juillet 2010Spectateurs 8000 personnesTéléspectacteurs 165000 personnesLieu Sprint CenterVille(s) Kansas City, Missouri, États-UnisCritique(s) The Sun : [2]C...

 

Voce principale: Athlītikī Enōsis Kōnstantinoupoleōs (pallacanestro). Athlītikī Enōsis KōnstantinoupoleōsStagione 2020-2021Sport pallacanestro Squadra AEK Atene Allenatore Īlias Papatheodōrou(fino al 10 aprile) Vaggelīs Angelou(dal 12 aprile) Assistenti Giōrgos Līmniatīs Dīmītrīs Menoudakos Savvas Symeonidis Presidente Makīs Angelopoulos Basket League4° (14-8) Play-off3° Champions LeaguePlay-Off Supercoppa greca4° Coppa di GreciaQuarti di finale Maggiori presenzeC...

Il mistero della piramideUna lobby card del filmTitolo originaleAbbott and Costello Meet the Mummy Paese di produzioneStati Uniti d'America Anno1955 Durata79 min Dati tecniciB/N Generecommedia RegiaCharles Lamont SoggettoLee Loeb SceneggiaturaJohn Grant ProduttoreHoward Christie per Universal Distribuzione in italianoUniversal (1959) FotografiaGeorge Robinson MontaggioRussell F. Schoengarth Effetti specialiClifford Stine MusicheJohn Benson Brooks ScenografiaAlexander Golitzen, Bill Newberry C...

 

Artikel ini bukan mengenai Partai Berkarya atau Partai Karya Perjuangan. Partai Golongan Karya SingkatanPartai GolkarKetua umumAirlangga HartartoSekretaris JenderalLodewijk Freidrich Paulus Ketua Fraksi di DPRKahar MuzakirDibentuk20 Oktober 1964; 59 tahun lalu (1964-10-20)Kantor pusatJakarta, IndonesiaSurat kabarSuara Karya (1971–2016)Sayap pemudaAMPG (Angkatan Muda Partai Golkar)AMPI (Angkatan Muda Pembaharu Indonesia)Sayap wanitaKPPG (Kesatuan Perempuan Partai Golkar)Sayap IslamSatka...

 

Lutte aux Jeux olympiques Généralités Sport Lutte 1re apparition Athènes, 1896 Organisateur(s) CIO Éditions 28e en 2020 Périodicité Tous les 4 ans Disciplines Gréco-romaine • Libre Épreuves 18 en 2020 Palmarès Plus titré(s) Kaori Ichō (4), Mijaín López (4) Plus médaillés Wilfried Dietrich (5) Meilleure nation URSS (62 titres) États-Unis (132 médailles) Pour la dernière compétition voir : Lutte aux Jeux olympiques d'été de 2020 modifier La Lutte est présente...

Dungeons & Dragons supplement This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Complete Psionics Handbook – news · newspapers · books · scholar · JSTOR (April 2014) (Learn how and when to remove this message) The Complete Psionics Handbook AuthorSteve WinterSeriesPlayer's Handbook Rules SupplementsSub...

 

Peta menunjukan lokasi Malalag Malalag adalah munisipalitas yang terletak di provinsi Davao del Sur, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 35.814 jiwa atau 7.604 rumah tangga. Pembagian wilayah Secara administratif Malalag terbagi menjadi 15 barangay, yaitu: Baybay Bolton Bulacan Caputian Ibo Kiblagon Lapla Mabini New Baclayon Pitu Poblacion Tagansule Bagumbayan Rizal (Parame) San Isidro Pranala luar Philippine Standard Geographic Code Diarsipkan 2012-04-13 di...

 

Not to be confused with Guayama, Puerto Rico. For other uses, see Guyana. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ciudad Guayana – news · newspapers · books · scholar · JSTOR (September 2020) (Learn how and when to remove this message) This article's lead section may be too long. Please read the leng...

Paying the Price: Killing the Children of IraqCuplikan judulSutradaraAlan LoweryProduserJohn Pilger Alan LoweryDitulis olehJohn PilgerPemeranJohn Pilger Dennis Halliday Robert Gates Hans von Sponeck Peter van Walsum Karol Sikora James Rubin Scott Ritter Said Aburish Doug RokkePenata musikNick Russell-PavierSinematograferPreston ClothierPenyuntingJoe FrostPerusahaanproduksiCarlton TelevisionTanggal rilisDurasi74 menitNegaraBritania RayaBahasaInggris Paying the Price: Killing the Children...

 

Not to be confused with Glenfield Park, New South Wales. Suburb of Sydney, New South Wales, AustraliaGlenfieldSydney, New South WalesGlenfield PanoramaMapPopulation9,633 (2016 census)[1]Established1881Postcode(s)2167Elevation25 m (82 ft)Location36 km (22 mi) SW of SydneyLGA(s)City of CampbelltownState electorate(s)Macquarie FieldsFederal division(s)Werriwa Suburbs around Glenfield: Prestons Casula Liverpool Edmondson Park Glenfield Moorebank Macquarie Lin...

 

American tennis player (1921–2009) This article is about the tennis player. For the American football player, see Jack Kramer (American football). For the baseball player, see Jack Kramer (baseball). For the Norwegian footballer, see Jack Kramer (footballer). This article has an unclear citation style. The references used may be made clearer with a different or consistent style of citation and footnoting. (July 2023) (Learn how and when to remove this message) Jack KramerKramer in the late ...

Anglo-Irish philosopher and bishop (1685–1753) For other people named George Berkeley, see George Berkeley (disambiguation). The Right ReverendGeorge BerkeleyBishop of CloynePortrait of Berkeley by John Smybert, 1727ChurchChurch of IrelandDioceseCloyneIn office1734–1753PredecessorEdward SyngeSuccessorJames StopfordOrdersOrdination1709 (deacon)1710 (priest)Consecration18 January 1734Personal detailsBorn(1685-03-12)12 March 1685Dysart Castle, near Thomastown, County Kilkenny, IrelandDied14 ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of Jesuits – news · newspapers · books · scholar · JSTOR (February 2019) (Learn how and when to remove this message) This list is incomplete; you can help by adding missing items. (February 2011) Ignatius of Loyola, recognized as a saint by the Catholic C...

 

American college basketball season 2000–01 Fresno State Bulldogs men's basketballWAC tournament championsNCAA tournament, second roundConferenceWestern Athletic ConferenceRecord26–7 (13–3 WAC)Head coachJerry Tarkanian (6th season)Home arenaSelland ArenaSeasons← 1999–20002001–02 → 2000–01 WAC men's basketball standings vte Conf Overall Team W   L   PCT W   L   PCT Fresno State 13 – 3   .813 26 – 7   .788 Tuls...

Allopumiliotoxin 267A Names Preferred IUPAC name (6E,7R,8R,8aS)-8-Methyl-6-[(2R)-2-methylhexylidene]octahydroindolizine-7,8-diol Identifiers CAS Number 73376-38-2 Y 3D model (JSmol) Interactive image ChemSpider 4580699 Y PubChem CID 5470308 UNII TEP57TLJ38 Y CompTox Dashboard (EPA) DTXSID301027204 InChI InChI=1S/C16H29NO2/c1-4-5-7-12(2)10-13-11-17-9-6-8-14(17)16(3,19)15(13)18/h10,12,14-15,18-19H,4-9,11H2,1-3H3/b13-10+/t12-,14+,15-,16-/m1/s1 YKey: LWXKAVPXEDNHLL-VRUXT...

 

画像提供依頼:現在の本人近影の画像提供をお願いします。(2021年4月) 美輪 明宏 撮影時期不明(原典では1950年代とされる)基本情報出生名 丸山 臣吾(まるやま しんご)(幼名)別名 丸山 明宏(まるやま あきひろ)(本名及び旧芸名)生誕 (1935-05-15) 1935年5月15日(89歳)出身地 日本・長崎県長崎市学歴 海星中学校ジャンル シャンソン職業 シンガーソングライタ�...

 

Constituency of Bangladesh's Jatiya Sangsad Bagerhat-4Constituencyfor the Jatiya SangsadDistrictBagerhat DistrictDivisionKhulna DivisionCurrent constituency Bagerhat-4 is a constituency represented in the Jatiya Sangsad (National Parliament) of Bangladesh from 2024 by HM Badiuzzaman Sohag of the Awami League. Boundaries The constituency encompasses Morrelganj, and Sarankhola upazilas.[1][2] Members of Parliament Election Member Party 1986[3] Altaf Hossain Jatiya Party ...

Cultural and Scientific Center Milutin MilankovićKulturni i znanstveni centar Milutin Milanković (Croatian) Културни и научни центар Милутин Миланковић (Serbian)Center's garden on the Danube riverfrontEstablished2009LocationDalj, CroatiaCoordinates45°29′09″N 18°59′22″E / 45.485719850655705°N 18.989359705761753°E / 45.485719850655705; 18.989359705761753DirectorĐorđe Nešić[1]Websitemilutin-milankov...

 

Medieval state in Southeastern Europe For other uses, see Dioclea and Doclea. Kingdom of DukljaDuklja10th century–1186Kingdom of Duklja (Dioclea) in 1089CapitalBarShkodërCommon languagesOld SerbianReligion ChristianityGovernmentMonarchyPrince/King • 10th century Petar (first known)• 1046 – 1081 Mihailo I (first king)• fl. 1180 – 1186 Mihailo III (last independent) History • Established 10th century• Elevated to the status of kingdom 107...