Langlands–Shahidi method

In mathematics, the Langlands–Shahidi method provides the means to define automorphic L-functions in many cases that arise with connected reductive groups over a number field. This includes Rankin–Selberg products for cuspidal automorphic representations of general linear groups. The method develops the theory of the local coefficient, which links to the global theory via Eisenstein series. The resulting L-functions satisfy a number of analytic properties, including an important functional equation.

The local coefficient

The setting is in the generality of a connected quasi-split reductive group G, together with a Levi subgroup M, defined over a local field F. For example, if G = Gl is a classical group of rank l, its maximal Levi subgroups are of the form GL(m) × Gn, where Gn is a classical group of rank n and of the same type as Gl, l = m + n. F. Shahidi develops the theory of the local coefficient for irreducible generic representations of M(F).[1] The local coefficient is defined by means of the uniqueness property of Whittaker models paired with the theory of intertwining operators for representations obtained by parabolic induction from generic representations.

The global intertwining operator appearing in the functional equation of Langlands' theory of Eisenstein series[2] can be decomposed as a product of local intertwining operators. When M is a maximal Levi subgroup, local coefficients arise from Fourier coefficients of appropriately chosen Eisenstein series and satisfy a crude functional equation involving a product of partial L-functions.

Local factors and functional equation

An induction step refines the crude functional equation of a globally generic cuspidal automorphic representation to individual functional equations of partial L-functions and γ-factors:[3]

The details are technical: s a complex variable, S a finite set of places (of the underlying global field) with unramified for v outside of S, and is the adjoint action of M on the complex Lie algebra of a specific subgroup of the Langlands dual group of G. When G is the special linear group SL(2), and M = T is the maximal torus of diagonal matrices, then π is a Größencharakter and the corresponding γ-factors are the local factors of Tate's thesis.

The γ-factors are uniquely characterized by their role in the functional equation and a list of local properties, including multiplicativity with respect to parabolic induction. They satisfy a relationship involving Artin L-functions and Artin root numbers when v gives an archimedean local field or when v is non-archimedean and is a constituent of an unramified principal series representation of M(F). Local L-functions and root numbers ε are then defined at every place, including , by means of Langlands classification for p-adic groups. The functional equation takes the form

where and are the completed global L-function and root number.

Examples of automorphic L-functions

  • , the Rankin–Selberg L-function of cuspidal automorphic representations of GL(m) and of GL(n).
  • , where τ is a cuspidal automorphic representation of GL(m) and π is a globally generic cuspidal automorphic representation of a classical group G.
  • , with τ as before and r a symmetric square, an exterior square, or an Asai representation of the dual group of GL(n).

A full list of Langlands–Shahidi L-functions[4] depends on the quasi-split group G and maximal Levi subgroup M. More specifically, the decomposition of the adjoint action can be classified using Dynkin diagrams. A first study of automorphic L-functions via the theory of Eisenstein Series can be found in Langlands' Euler Products,[5] under the assumption that the automorphic representations are everywhere unramified. What the Langlands–Shahidi method provides is the definition of L-functions and root numbers with no other condition on the representation of M other than requiring the existence of a Whittaker model.

Analytic properties of L-functions

Global L-functions are said to be nice[6] if they satisfy:

  1. extend to entire functions of the complex variable s.
  2. are bounded in vertical strips.
  3. (Functional Equation) .

Langlands–Shahidi L-functions satisfy the functional equation. Progress towards boundedness in vertical strips was made by S. S. Gelbart and F. Shahidi.[7] And, after incorporating twists by highly ramified characters, Langlands–Shahidi L-functions do become entire.[8]

Another result is the non-vanishing of L-functions. For Rankin–Selberg products of general linear groups it states that is non-zero for every real number t.[9]

Applications to functoriality and to representation theory of p-adic groups

  • Functoriality for the classical groups: A cuspidal globally generic automorphic representation of a classical group admits a Langlands functorial lift to an automorphic representation of GL(N),[10] where N depends on the classical group. Then, the Ramanujan bounds of W. Luo, Z. Rudnick and P. Sarnak[11] for GL(N) over number fields yield non-trivial bounds for the generalized Ramanujan conjecture of the classical groups.
  • Symmetric powers for GL(2): Proofs of functoriality for the symmetric cube and for the symmetric fourth[12] powers of cuspidal automorphic representations of GL(2) were made possible by the Langlands–Shahidi method. Progress towards higher Symmetric powers leads to the best possible bounds towards the Ramanujan–Peterson conjecture of automorphic cusp forms of GL(2).
  • Representations of p-adic groups: Applications involving Harish-Chandra μ functions (from the Plancherel formula) and to complementary series of p-adic reductive groups are possible. For example, GL(n) appears as the Siegel Levi subgroup of a classical group G. If π is a smooth irreducible ramified supercuspidal representation of GL(n, F) over a field F of p-adic numbers, and is irreducible, then:
  1. is irreducible and in the complementary series for 0 < s < 1;
  2. is reducible and has a unique generic non-supercuspidal discrete series subrepresentation;
  3. is irreducible and never in the complementary series for s > 1.

Here, is obtained by unitary parabolic induction from

  • if G = SO(2n), Sp(2n), or U(n+1, n);
  • if G = SO(2n+1) or U(n, n).

References

  1. ^ F. Shahidi, On certain L-functions, American Journal of Mathematics 103 (1981), 297–355.
  2. ^ R. P. Langlands, On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Math., Vol. 544, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
  3. ^ F. Shahidi, A proof of Langlands conjecture on Plancherel measures; Complementary series for p-adic groups, Annals of Mathematics 132 (1990), 273–330.
  4. ^ F. Shahidi, Eisenstein Series and Automorphic L-functions, Colloquium Publications, Vol. 58, American Mathematical Society, Providence, Rhode Island, 2010. ISBN 978-0-8218-4989-7
  5. ^ R. P. Langlands, Euler Products, Yale Univ. Press, New Haven, 1971
  6. ^ J. W. Cogdell and I. I. Piatetski–Shapiro, Converse theorems for GL(n), Publications Mathématiques de l'IHÉS 79 (1994), 157–214.
  7. ^ S. Gelbart and F. Shahidi, Boundedness of automorphic L-functions in vertical strips, Journal of the American Mathematical Society, 14 (2001), 79–107.
  8. ^ H. H. Kim and F. Shahidi, Functorial products for GL(2) × GL(3) and the symmetric cube for GL(2), Annals of Mathematics 155 (2002), 837–893.
  9. ^ F. Shahidi, On nonvanishing of L-functions. Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 462–464.
  10. ^ J. W. Cogdell, H. H. Kim, I. I. Piatetski–Shapiro, and F. Shahidi, Functoriality for the classical groups, Publications Mathématiques de l'IHÉS 99 (2004), 163–233
  11. ^ W. Luo, Z. Rudnick, and P. Sarnak, On the generalized Ramanujan conjecture for GL(n), Proceedings of Symposia in Pure Mathematics 66, part 2 (1999), 301–310.
  12. ^ H. H. Kim, Functoriality for the exterior square of GL(4) and the symmetric fourth of GL(2), Journal of the American Mathematical Society 16 (2002), 131–183.

Read other articles:

غثيان وقيء بعد العملية الجراحية معلومات عامة من أنواع غثيان،  ومضاعفات بعد العمليات  [لغات أخرى]‏  الإدارة أدوية ميتوكلوبراميد  تعديل مصدري - تعديل   الغثيان والقيء بعد العملية الجراحية هي المضاعفات التي تؤثر على حوالي 10% من الأشخاص الذين يخضعون للتخدير ا...

 

Paralimpiade XTuan rumahAtlanta, Amerika SerikatMotoThe Triumph of the Human SpiritJumlah negara104Jumlah atlet3.259Jumlah disiplin517 dalam 20 cabang olahragaPembukaan16 Agustus 1996Penutupan25 Agustus 1996Dibuka olehAl Gore, Wakil Presiden ASKaldronMark WellmanStadionStadion Olimpiade CentennialMusim Panas Olimpiade: Atlanta 1996 ← Barcelona 1992 Sydney 2000 → Musim Dingin ← Lillehammer 1994 Nagano 1998 → Paralimpiade Musim Panas 1996 (Paralimpiade Musim Panas X) ada...

 

Irish censorship and classification within Ireland This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Irish Film Classification Office – news · newspapers · books · scholar · JSTOR (February 2012) (Learn how and when to remove this template message) Irish Film Classification OfficeOifig Aicmithe Scannán na hÉ...

Serbian patriarch Mihailo DožićHegumen of Morača MonasteryNative nameМихаилоChurchSerbian Orthodox ChurchElected5 March 1879Installed10 March 1879 (Morača Monastery)Term ended9 June 1914OrdersOrdination20 May 1865Consecration5 March 1879by Ilarion RoganovićRankArchimandritePersonal detailsBornMilovan Dožić(1848-11-15)15 November 1848Vrujci, Kolašin Municipality, Principality of SerbiaDied9 June 1914(1914-06-09) (aged 65)Morača Monastery, Kingdom of SerbiaBuriedMorač...

 

Questa voce o sezione sull'argomento nobili tedeschi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Simone Enrico AdolfoRitratto del conte Simone Enrico Adolfo di Lippe-DetmoldConte di Lippe-DetmoldStemma In carica1718 - 1734 PredecessoreFederico Adolfo SuccessoreSimone Augusto TrattamentoSua altezza serenissima NascitaDetmold, 25 gennaio 1694 Mor...

 

1946 1956 Élections législatives de 1951 dans l'Aube le 17 juin 1951 Type d’élection Élection législative Postes à élire 4 députés modifier - modifier le code - voir Wikidata  Les élections législatives françaises de 1951 se tiennent le 17 juin. Ce sont les deuxièmes élections législatives de la Quatrième République. Mode de Scrutin Représentation proportionnelle plurinominale suivant la méthode du plus fort reste dans 103 circonscriptions, conformément à la ...

Submachine gun Type 77 submachine gun TypeSubmachine gunPlace of originTaiwan (Republic of China)Production historyDesigned1985ManufacturerHsing Hua ArsenalSpecificationsMass2.82 kg emptyLength 335 mm (13.19 in) with stock folded 610 mm (24.02 in) with stock extended Barrel length215 mm (8.46 in)Cartridge9×19mm ParabellumCaliber9 mmActionBlowbackRate of fire1200-1500 RPMMaximum firing range150 m (492 ft)Feed syst...

 

Australian film and culture award ceremony This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (February 2019) (Learn how and when to remove this message) Asia Pacific Screen AwardsCurrent: 16th Asia Pacific Screen AwardsAsia Pacific Screen Awards logoAwarded forBest in film and documentary in the Asia-Pacific region...

 

Tiziano Pieri Informazioni personali Arbitro di Calcio Sezione Lucca Attività nazionale Anni Campionato Ruolo 2001-2008 Serie A arbitro Tiziano Pieri (Genova, 16 novembre 1971) è un ex arbitro di calcio italiano. Biografia Iscritto alla sezione AIA di Genova, dal 2002 a quella di Lucca, ha esordito in Serie A il 16 settembre 2001 in Fiorentina-Atalanta terminata 3-1. Nel gennaio 2006 arriva la nomina ad arbitro internazionale, però, dopo pochi mesi viene coinvolto nell'inchiesta nota come...

Pour les articles homonymes, voir Star Trek (homonymie). Logo de la série télévisée Star Trek. Cette section doit être actualisée. Des passages de cette section sont obsolètes ou annoncent des événements désormais passés. Améliorez-la ou discutez-en. Star Trek[n 1] (à l'origine nommée sous son titre français, Patrouille du cosmos) est un univers de science-fiction, créé par Gene Roddenberry en 1966, qui regroupe sept séries télévisées qui comptabilisent 788 épisodes[...

 

No. 334 (Norwegian) Squadron RAFde Havilland MosquitoActive1945CountryUnited KingdomAllegianceNorwegian Government in exileBranchRoyal Air ForceNickname(s)NorwegianMilitary unit No. 334 (Norwegian) Squadron was a Royal Air Force aircraft squadron that operated after the Second World War. Established after V-E Day, it soon became 334 Squadron of the Royal Norwegian Air Force.[1] History The squadron was formed on 26 May 1945 at RAF Banff, Scotland from B Flight of 333 Squadron.[2&...

 

Calvisson La mairie. Blason Administration Pays France Région Occitanie Département Gard Arrondissement Nîmes Intercommunalité Communauté de communes du Pays de Sommières Maire Mandat André Sauzède 2020-2026 Code postal 30420 Code commune 30062 Démographie Gentilé Calvissonais (ses) Populationmunicipale 6 105 hab. (2021 ) Densité 211 hab./km2 Géographie Coordonnées 43° 47′ 09″ nord, 4° 11′ 34″ est Altitude Min. 23 mMax....

Japanese-American Delta/SLS rocket part Delta Cryogenic Second StageA 4-meter DCSS from a Delta IV MediumManufacturerBoeing IDSUnited Launch AllianceMitsubishi Heavy Industries(Original Delta III design and manufacturing)JAXA/NASDA(H-IIA/DCSS upper stage design, original version)Country of originUnited StatesJapan (Delta III, original)Used onDelta IIIDelta IVSLS Block ILaunch historyStatusActiveTotal launches45Successes(stage only)4218 Delta IV 4 m23 Delta IV 5 mFailed2 (Delta III)L...

 

Provincial park in Ontario, Canada Aaron Provincial ParkIUCN category II (national park)To the south of Thunder Lake is the surrounding Aaron Provincial Park, camera viewing northLocation of Aaron Provincial Park in Ontario.LocationKenora, Ontario, CanadaCoordinates49°45′42.2″N 92°39′23.4″W / 49.761722°N 92.656500°W / 49.761722; -92.656500Area116 ha (290 acres)Elevation382 m (1,253 ft)Named forOriginal homestead of John. T. Aaron Aaron Provin...

 

Headquarters component of the U.S. Marine Corps' Marine Air-Ground Task Forces For the HTML element <command>, see HTML 5. USMC Combat Operations Center In the United States Marine Corps, the command element (CE) is the command and control force of a Marine Air-Ground Task Force (MAGTF). It provides C3I for the MAGTF. Role within the MAGTF The Command Element (CE), a headquarters unit organized into a MAGTF (MEU, MEB, MEF) headquarters (HQ) group, that exercises command and control (man...

Pour les articles homonymes, voir Durant. PhilBiographieNaissance 30 août 1964WahaDécès 18 avril 2012 (à 47 ans)LiègeSépulture LiègeNom de naissance Philippe DurantNationalité belgeActivités Auteur de bande dessinée, scénariste de bande dessinée, dessinateur humoristique, dessinateur de presseAutres informationsA travaillé pour SpirouPsikopatGenre artistique Bande dessinée alternativeBlog officiel philcomix.blogspot.comŒuvres principales Comix 2000modifier - modifier le c...

 

For other hospitals with the same name (see list), see Victoria Hospital. Hospital in Quebec, CanadaRoyal Victoria Hospital - GlenMcGill University Health CentreMcGill University Health Center's hospital complex - Glen siteLocation in Montreal (Glen site)GeographyLocation1001 Decarie Boulevard, Montreal, Quebec, CanadaCoordinates45°28′19″N 73°36′10″W / 45.471851°N 73.602716°W / 45.471851; -73.602716OrganizationCare systemPublic (RAMQ)TypeTeachingAffiliated ...

 

Cet article est une ébauche concernant l’astrophysique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Hayashi. Le trajet de Hayashi est une étude faite par l'astrophysicien japonais Chūshirō Hayashi sur les proto-étoiles et leur équilibre hydrostatique. Plus concrètement, c'est une ligne presque verticale sur la droite du diagramme de Hertzsprung-Russell, donc une rel...

San Giorgio e il dragoAutorePaolo Uccello Data1460 circa Tecnicaolio su tela Dimensioni57×73 cm UbicazioneNational Gallery, Londra San Giorgio e il drago è un dipinto a olio su tela (57×73 cm) di Paolo Uccello, conservato alla National Gallery di Londra e databile al 1460 circa. Sebbene notoriamente l'uso della tela come supporto per i dipinti sia divenuto popolare a Venezia verso la fine del Quattrocento, pare che i primi esempi di pittura su tela siano fiorentini. Questo dipint...

 

Halaman ini berisi artikel tentang aktris Amerika. Untuk perenang Olimpiade Australia, lihat Rachel Harris. Untuk orang dengan nama yang mirip, lihat Rachel Harris (disambiguasi). Rachael HarrisHarris di WonderCon 2017LahirRachael Elaine Harris12 Januari 1968 (umur 56)Worthington, Ohio, ASNama lainRachel HarrisAlmamaterOtterbein UniversityPekerjaanAktris, pelawakTahun aktif1992–sekarangSuami/istriAdam Paul ​ ​(m. 2003; c. 2008)​...