左分配律:任意の a, b, c ∈ R に対して a ∗ (b + c) = (a ∗ b) + (a ∗ c) が成り立つ。
右分配律:任意の a, b, c ∈ R に対して (a + b) ∗ c = (a ∗ c) + (b ∗ c) が成り立つ。
が成り立つものをいう。乗法演算の記号 ∗ は普通省略されて、a ∗ b は、ab と書かれる。
よく知られた整数全体の成す集合 Z, 有理数全体の成す集合 Q, 実数全体の成す集合 R あるいは複素数全体の成す集合は通常の加法と乗法に関してそれぞれ環を成す。また別な例として、同じサイズの正方行列全体の成す集合も行列の和と乗法に関して環を成す(この場合の環としての零元は零行列、単位元は単位行列で与えられる)。
もっと重大な差異を生む流儀として、環には「乗法の単位元の存在を要求しない」というものがある[4][5][6]。これを認めると、例えば偶数全体 2Z も通常の加法と乗法に関する環となると考えることができる(実際にこれは乗法単位元の存在以外の環の公理を全て満足する)。乗法単位元の存在以外の環の公理を満足する環は、しばしば擬環(pseudo-ring) とも呼ばれ、あるいは多少おどけて(ring だけれども乗法単位元 i が無いからということで)"rng" と書かれることもある。これと対照的に、乗法単位元を持つことを強調する場合には、単位的環や単位環(unital ring, unitary ring) あるいは単位元を持つ環(ring with unity, ring with identity, rings with 1) などと呼ぶ[7]。ただし、非単位的環を単位的環に埋め込むことは常にできる(単位元の添加)ということに注意。
R の部分集合 S が R における加法と乗法について環になっているとき、S は部分環であるという。ただし、R が単位的であるときは、S が(単位的環としての)部分環であるためには S が R における単位元を含むことを課す。
R の元で他のどの元との積も可換になっているものを集めた集合 Z(R) はRの中心と呼ばれる。Z(R) は R の可換な部分環になっている。
イデアル
R の部分集合 I が加法について閉じていて、x ∈ R, y ∈ I ならば xy やyx が必ず I に入っているとき、I を両側イデアルという。(したがって両側イデアルは単位元を持つとは限らない環である。)イデアル I が与えられているとき、x − y ∈ I で R に同値関係を定義することができる。さらに同値類の間に自然な演算を定義できて、環になることが分かる。この環を R の I による剰余環といい、R/I と書く。
(R, +R, ·R) を環とし、R 上の実質有限列(有限個の例外を除く全ての項が 0 となる無限列)の全体を
とおく。ただし、ここでは非負整数(特に 0 を含む)の意味で N を用いているものと約束する。S の演算 +S : S × S → S および ·S : S × S → S を、a = (ai)i∈N および b = (bi)i∈N を S の任意の元として、
と定めると、(S, +S, ·S) は環となる。これを環 R 上の多項式環と呼ぶ。
S の元 (0, 1, 0, 0, …) を X とすれば、多項式環としての S は R[X] と書くのが通例である。これにより、S の元 f = (fi) は
と R に係数を持つ多項式の形に書ける。したがって S は R 上の X を不定元とする多項式全体に、標準的なやり方で加法と乗法を定義したものと見なすことができる。通常はこれを同一視して、ここでいう S を R[X] と書いて、R における演算も S における演算も特に識別のための符牒を省略する。
環 R が右主イデアル環 (PIR) であるとは、R の任意の右イデアルが
の形に表されることをいう。また主イデアル整域 (PID) とは整域でもある主イデアル環をいう。
環が主イデアル整域であるという条件は、環に対するほかの一般的な条件よりもいくぶん強い制約条件である。例えば、R が一意分解整域 (UFD) ならば R 上の多項式環も UFD となるが、R が主イデアル環の場合同様の主張は一般には正しくない。整数環 Z は主イデアル環の簡単な例だが、Z 上の多項式環は R = Z[X] は PIR でない(実際 I = 2R + XR は単項生成でない)。このような反例があるにもかかわらず、任意の体上の一変数多項式環は主イデアル整域となる(実はさらに強く、ユークリッド整域になる)。より一般に、一変数多項式環が PID となるための必要十分条件は、その多項式環が体上定義されていることである。
PIR 上の多項式環のことに加えて、主イデアル環は、可除性に関して有理整数環との関係を考えても、いろいろと興味深い性質を有することが分かる。つまり、主イデアル整域は可除性に関して整数環と同様に振舞うのである。例えば、任意の PID は UFD である、すなわち算術の基本定理の対応物が任意の PID で成立する。さらに言えば、ネーター環というのは任意のイデアルが有限生成となる環のことだから、主イデアル整域は明らかにネーター環である。PID においては既約元の概念と素元の概念が一致するという事実と、任意の PID がネーター環であるという事実とを合わせると、任意の PID が UFD となることが示せる。PID においては、任意の二元の最大公約元について延べることができる。すなわち、x, y が主イデアル整域 R の元であるとき、xR + yR = cR(左辺は再びイデアルとなるから、それを生成する元 c がある)とすれば、この c が x と y の GCD である。
環は非常に重要な数学的対象であるにもかかわらず、その理論の展開には様々な制約がある。例えば、環 R の元 a, b に対して、a が零元でなく ab = 0 が成り立つとしても、b は必ずしも零元でない。特に、ab = ac で a が零元でないということから、b = c を帰結することができない。このような事実の具体的な例としては、環 R 上の行列環を考えて、a を零行列ではない非正則行列とすればよい。しかし、環に対して更なる条件を課すことで、今の場合の問題は取り除くことができる。すなわち、考える環を整域(零因子を持たない非自明な可換環)に制限するのである。しかしこれでもなお、零元でない任意の元で割り算ができるかどうかは保証されないといったような問題は生じる。例えば整数環 Z は整域を成すが、整数 a を整数 b で割るというのは整数の範囲内では必ずしもできない(整数 2 で整数 3 は割り切れず環 Z からはみ出してしまう)。この問題を解決するには、零元以外の任意の元が逆元を持つ環を考える必要がある。すなわち、体とは、環であって、その零元を除く元の全体が乗法に関してアーベル群となるものである。特に体は割り算が自由にできることから整域となる(つまり零因子を持たない)。すなわち、体 F の元 a, b に対して、商 a/b は ab−1 によって矛盾無く定まる。
任意の環はアーベル群の圏Ab におけるモノイド対象である(Z-加群のテンソル積のもとでモノイド圏として考える)。環 R のアーベル群へのモノイド作用は単にR-加群である。簡単に言えば R-加群はベクトル空間の一般化である(体上のベクトル空間を考える代わりに、「環上のベクトル空間」とでもいうべきものを考えている)。
アーベル群 (A, +) とその自己準同型環 End(A) を考える。簡単に言えば End(A) は A 上の射の全体の成す集合であり、f と g が End(A) の元であるとき、それらの和と積は
で与えられる。+ の右辺における f(x) + g(x) は A における和であり、積は写像の合成である。これは任意のアーベル群に付随する環である。逆に、任意の環 (R, +, · ) が与えられるとき、乗法構造を忘れた (R, +) はアーベル群となる。さらに言えば、R の各元 r に対して、右または左から r を掛けるという操作が分配的であることは、それがアーベル群 (R, +) 上に群の準同型(圏 Ab における射)となるという意味になる。A = (R, +) とかくことにして、A の自己同型を考えれば、それは R における右または左からの乗法と「可換」である。言い換えれば EndR(A) を A 上の射全体の成す環とし、その元を m とすれば m(rx) = rm(x) という性質が成り立つ。これは R の任意の元 r に対して、r の右乗法による A の射が定まると見ることもできる。R の各元にこうして得られる A の射を対応させることで R から EndR(A) への写像が定まり、これは実は環の同型を与える。この意味で、任意の環はあるアーベル X-群の自己準同型環と見なすことができる(ここで X-群というのはX を作用域に持つ群の意味である[14]。要するに、環の最も一般的な形は、あるアーベル X-群の自己準同型環であるということになる。
Atiyah M. F., Macdonald, I. G., Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp.
Beachy, J. A. Introductory Lectures on Rings and Modules. Cambridge, England: Cambridge University Press, 1999.
T.S. Blyth and E.F. Robertson (1985), Groups, rings and fields: Algebra through practice, Book 3, Cambridge university Press, ISBN0-521-27288-2
Ellis, G. Rings and Fields. Oxford, England: Oxford University Press, 1993.
Goodearl, K. R., Warfield, R. B., Jr., An introduction to noncommutative Noetherian rings. London Mathematical Society Student Texts, 16. Cambridge University Press, Cambridge, 1989. xviii+303 pp. ISBN 0-521-36086-2
Herstein, I. N., Noncommutative rings. Reprint of the 1968 original. With an afterword by Lance W. Small. Carus Mathematical Monographs, 15. Mathematical Association of America, Washington, DC, 1994. xii+202 pp. ISBN 0-88385-015-X
Nagell, T. "Moduls, Rings, and Fields." §6 in Introduction to Number Theory. New York: Wiley, pp.19-21, 1951
Nathan Jacobson, Structure of rings. American Mathematical Society Colloquium Publications, Vol. 37. Revised edition American Mathematical Society, Providence, R.I. 1964 ix+299 pp.
Nathan Jacobson, The Theory of Rings. American Mathematical Society Mathematical Surveys, vol. I. American Mathematical Society, New York, 1943. vi+150 pp.
Lam, T. Y., A first course in noncommutative rings. Second edition. Graduate Texts in Mathematics, 131. Springer-Verlag, New York, 2001. xx+385 pp. ISBN 0-387-95183-0
Lam, T. Y., Exercises in classical ring theory. Second edition. Problem Books in Mathematics. Springer-Verlag, New York, 2003. xx+359 pp. ISBN 0-387-00500-5
Lam, T. Y., Lectures on modules and rings. Graduate Texts in Mathematics, 189. Springer-Verlag, New York, 1999. xxiv+557 pp. ISBN 0-387-98428-3
McConnell, J. C.; Robson, J. C. Noncommutative Noetherian rings. Revised edition. Graduate Studies in Mathematics, 30. American Mathematical Society, Providence, RI, 2001. xx+636 pp. ISBN 0-8218-2169-5
Rowen, Louis H., Ring theory. Vol. I, II. Pure and Applied Mathematics, 127, 128. Academic Press, Inc., Boston, MA, 1988. ISBN0-12-599841-4, 0-12-599842-2
Sloane, N. J. A. Sequences A027623 and A037234 in "The On-Line Encyclopedia of Integer Sequences
Zwillinger, D. (Ed.). "Rings." §2.6.3 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp.141-143, 1995
特定の話題に関するもの
Balcerzyk, Stanisław; Józefiak, Tadeusz (1989), Commutative Noetherian and Krull rings, Ellis Horwood Series: Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN978-0-13-155615-7
Balcerzyk, Stanisław; Józefiak, Tadeusz (1989), Dimension, multiplicity and homological methods, Ellis Horwood Series: Mathematics and its Applications., Chichester: Ellis Horwood Ltd., ISBN978-0-13-155623-2
Ballieu, R. "Anneaux finis; systèmes hypercomplexes de rang trois sur un corps commutatif." Ann. Soc. Sci. Bruxelles. Sér. I 61, 222-227, 1947.
Berrick, A. J. and Keating, M. E. An Introduction to Rings and Modules with K-Theory in View. Cambridge, England: Cambridge University Press, 2000.
Pierce, Richard S., Associative algebras. Graduate Texts in Mathematics, 88. Studies in the History of Modern Science, 9. Springer-Verlag, New York–Berlin, 1982. xii+436 pp. ISBN0-387-90693-2
Birkhoff, G. and Mac Lane, S. A Survey of Modern Algebra, 5th ed. New York: Macmillian, 1996
Bronshtein, I. N. and Semendyayev, K. A. Handbook of Mathematics, 4th ed. New York: Springer-Verlag, 2004. ISBN 3-540-43491-7
Faith, Carl, Rings and things and a fine array of twentieth century associative algebra. Mathematical Surveys and Monographs, 65. American Mathematical Society, Providence, RI, 1999. xxxiv+422 pp. ISBN 0-8218-0993-8
Itô, K. (Ed.). "Rings." §368 in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 2. Cambridge, MA: MIT Press, 1986
Kleiner, I. "The Genesis of the Abstract Ring Concept." Amer. Math. Monthly 103, 417-424, 1996
Renteln, P. and Dundes, A. "Foolproof: A Sampling of Mathematical Folk Humor." Notices Amer. Math. Soc. 52, 24-34, 2005
Singmaster, D. and Bloom, D. M. "Problem E1648." Amer. Math. Monthly 71, 918-920, 1964
Van der Waerden, B. L. A History of Algebra. New York: Springer-Verlag, 1985
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p.1168, 2002