^Freund, R. and Nachtigal, N. "QMR: A Quasi-Minimal Residual Method for Non-Hermitian Linear Systems." Numer. Math. 60, 315-339, 1991.
^Freund, R. and Nachtigal, N. "An Implementation of the QMR Method Based on Coupled Two-Term Recurrences." SIAM J. Sci. Statist. Comput. 15, 313-337, 1994.
^Roland W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, en:SIAM Journal on Scientific Computing 1993; 14(2):470–482.
^Christopher C. Paige and Michael A. Saunders, Solution of sparse indefinite systems of linear equations, en:SIAM Journal on Numerical Analysis 1975; 12(4):617–629.
David S. Watkins (2008). The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM.
Liesen, J. and Strakos, Z. (2012). Krylov subspace methods: principles and analysis. OUP Oxford.
Gerard Meurant and Jurjen Duintjer Tebbens (2020). "Krylov methods for nonsymmetric linear systems - From theory to computations", Springer Series in Computational Mathematics, vol.57. ISBN978-3-030-55250-3, doi:10.1007/978-3-030-55251-0.
Iman Farahbakhsh: "Krylov Subspace Methods with Application in Incompressible Fluid Flow Solvers", Wiley, ISBN 978-1119618683 (2020).