Spearman's rank correlation coefficient

A Spearman correlation of results when the two variables being compared are monotonically related, even if their relationship is not linear. This means that all data points with greater values than that of a given data point will have greater values as well. In contrast, this does not give a perfect Pearson correlation.
When the data are roughly elliptically distributed and there are no prominent outliers, the Spearman correlation and Pearson correlation give similar values.
The Spearman correlation is less sensitive than the Pearson correlation to strong outliers that are in the tails of both samples. That is because Spearman's ρ limits the outlier to the value of its rank.

In statistics, Spearman's rank correlation coefficient or Spearman's ρ, named after Charles Spearman[1] and often denoted by the Greek letter (rho) or as , is a nonparametric measure of rank correlation (statistical dependence between the rankings of two variables). It assesses how well the relationship between two variables can be described using a monotonic function.

The Spearman correlation between two variables is equal to the Pearson correlation between the rank values of those two variables; while Pearson's correlation assesses linear relationships, Spearman's correlation assesses monotonic relationships (whether linear or not). If there are no repeated data values, a perfect Spearman correlation of +1 or −1 occurs when each of the variables is a perfect monotone function of the other.

Intuitively, the Spearman correlation between two variables will be high when observations have a similar (or identical for a correlation of 1) rank (i.e. relative position label of the observations within the variable: 1st, 2nd, 3rd, etc.) between the two variables, and low when observations have a dissimilar (or fully opposed for a correlation of −1) rank between the two variables.

Spearman's coefficient is appropriate for both continuous and discrete ordinal variables.[2][3] Both Spearman's and Kendall's can be formulated as special cases of a more general correlation coefficient.

Applications

The coefficient can be used to determine how well data fits a model,[4] like when determining the similarity of text documents.[5]

Definition and calculation

The Spearman correlation coefficient is defined as the Pearson correlation coefficient between the rank variables.[6]

For a sample of size the pairs of raw scores are converted to ranks and is computed as

where

denotes the conventional Pearson correlation coefficient operator, but applied to the rank variables,
is the covariance of the rank variables,
and are the standard deviations of the rank variables.

Only when all ranks are distinct integers (no ties), it can be computed using the popular formula

where

is the difference between the two ranks of each observation,
is the number of observations.
[Proof]

Consider a bivariate sample with corresponding rank pairs Then the Spearman correlation coefficient of is

where, as usual,

and

We shall show that can be expressed purely in terms of provided we assume that there be no ties within each sample.

Under this assumption, we have that can be viewed as random variables distributed like a uniformly distributed discrete random variable, on Hence and where

and thus

(These sums can be computed using the formulas for the triangular numbers and square pyramidal numbers, or basic summation results from umbral calculus.)

Observe now that

Putting this all together thus yields

Identical values are usually[7] each assigned fractional ranks equal to the average of their positions in the ascending order of the values, which is equivalent to averaging over all possible permutations.

If ties are present in the data set, the simplified formula above yields incorrect results: Only if in both variables all ranks are distinct, then (calculated according to biased variance). The first equation — normalizing by the standard deviation — may be used even when ranks are normalized to [0, 1] ("relative ranks") because it is insensitive both to translation and linear scaling.

The simplified method should also not be used in cases where the data set is truncated; that is, when the Spearman's correlation coefficient is desired for the top X records (whether by pre-change rank or post-change rank, or both), the user should use the Pearson correlation coefficient formula given above.[8]

There are several other numerical measures that quantify the extent of statistical dependence between pairs of observations. The most common of these is the Pearson product-moment correlation coefficient, which is a similar correlation method to Spearman's rank, that measures the “linear” relationships between the raw numbers rather than between their ranks.

An alternative name for the Spearman rank correlation is the “grade correlation”;[9] in this, the “rank” of an observation is replaced by the “grade”. In continuous distributions, the grade of an observation is, by convention, always one half less than the rank, and hence the grade and rank correlations are the same in this case. More generally, the “grade” of an observation is proportional to an estimate of the fraction of a population less than a given value, with the half-observation adjustment at observed values. Thus this corresponds to one possible treatment of tied ranks. While unusual, the term “grade correlation” is still in use.[10]

Interpretation

Positive and negative Spearman rank correlations
A positive Spearman correlation coefficient corresponds to an increasing monotonic trend between X and Y.
A negative Spearman correlation coefficient corresponds to a decreasing monotonic trend between X and Y.

The sign of the Spearman correlation indicates the direction of association between X (the independent variable) and Y (the dependent variable). If Y tends to increase when X increases, the Spearman correlation coefficient is positive. If Y tends to decrease when X increases, the Spearman correlation coefficient is negative. A Spearman correlation of zero indicates that there is no tendency for Y to either increase or decrease when X increases. The Spearman correlation increases in magnitude as X and Y become closer to being perfectly monotonic functions of each other. When X and Y are perfectly monotonically related, the Spearman correlation coefficient becomes 1. A perfectly monotonic increasing relationship implies that for any two pairs of data values Xi, Yi and Xj, Yj, that XiXj and YiYj always have the same sign. A perfectly monotonic decreasing relationship implies that these differences always have opposite signs.

The Spearman correlation coefficient is often described as being "nonparametric". This can have two meanings. First, a perfect Spearman correlation results when X and Y are related by any monotonic function. Contrast this with the Pearson correlation, which only gives a perfect value when X and Y are related by a linear function. The other sense in which the Spearman correlation is nonparametric is that its exact sampling distribution can be obtained without requiring knowledge (i.e., knowing the parameters) of the joint probability distribution of X and Y.

Example

In this example, the arbitrary raw data in the table below is used to calculate the correlation between the IQ of a person with the number of hours spent in front of TV per week [fictitious values used].

IQ, Hours of TV per week,
106 7
100 27
86 2
101 50
99 28
103 29
97 20
113 12
112 6
110 17

Firstly, evaluate . To do so use the following steps, reflected in the table below.

  1. Sort the data by the first column (). Create a new column and assign it the ranked values 1, 2, 3, ..., n.
  2. Next, sort the augmented (with ) data by the second column (). Create a fourth column and similarly assign it the ranked values 1, 2, 3, ..., n.
  3. Create a fifth column to hold the differences between the two rank columns ( and ).
  4. Create one final column to hold the value of column squared.
IQ, Hours of TV per week, rank rank
86 2 1 1 0 0
97 20 2 6 −4 16
99 28 3 8 −5 25
100 27 4 7 −3 9
101 50 5 10 −5 25
103 29 6 9 −3 9
106 7 7 3 4 16
110 17 8 5 3 9
112 6 9 2 7 49
113 12 10 4 6 36

With found, add them to find . The value of n is 10. These values can now be substituted back into the equation

to give

which evaluates to ρ = −29/165 = −0.175757575... with a p-value = 0.627188 (using the t-distribution).

Chart of the data presented. It can be seen that there might be a negative correlation, but that the relationship does not appear definitive.

That the value is close to zero shows that the correlation between IQ and hours spent watching TV is very low, although the negative value suggests that the longer the time spent watching television the lower the IQ. In the case of ties in the original values, this formula should not be used; instead, the Pearson correlation coefficient should be calculated on the ranks (where ties are given ranks, as described above).

Confidence intervals

Confidence intervals for Spearman's ρ can be easily obtained using the Jackknife Euclidean likelihood approach in de Carvalho and Marques (2012).[11] The confidence interval with level is based on a Wilks' theorem given in the latter paper, and is given by

where is the quantile of a chi-square distribution with one degree of freedom, and the are jackknife pseudo-values. This approach is implemented in the R package spearmanCI.

Determining significance

One approach to test whether an observed value of ρ is significantly different from zero (r will always maintain −1 ≤ r ≤ 1) is to calculate the probability that it would be greater than or equal to the observed r, given the null hypothesis, by using a permutation test. An advantage of this approach is that it automatically takes into account the number of tied data values in the sample and the way they are treated in computing the rank correlation.

Another approach parallels the use of the Fisher transformation in the case of the Pearson product-moment correlation coefficient. That is, confidence intervals and hypothesis tests relating to the population value ρ can be carried out using the Fisher transformation:

If F(r) is the Fisher transformation of r, the sample Spearman rank correlation coefficient, and n is the sample size, then

is a z-score for r, which approximately follows a standard normal distribution under the null hypothesis of statistical independence (ρ = 0).[12][13]

One can also test for significance using

which is distributed approximately as Student's t-distribution with n − 2 degrees of freedom under the null hypothesis.[14] A justification for this result relies on a permutation argument.[15]

A generalization of the Spearman coefficient is useful in the situation where there are three or more conditions, a number of subjects are all observed in each of them, and it is predicted that the observations will have a particular order. For example, a number of subjects might each be given three trials at the same task, and it is predicted that performance will improve from trial to trial. A test of the significance of the trend between conditions in this situation was developed by E. B. Page[16] and is usually referred to as Page's trend test for ordered alternatives.

Correspondence analysis based on Spearman's ρ

Classic correspondence analysis is a statistical method that gives a score to every value of two nominal variables. In this way the Pearson correlation coefficient between them is maximized.

There exists an equivalent of this method, called grade correspondence analysis, which maximizes Spearman's ρ or Kendall's τ.[17]

Approximating Spearman's ρ from a stream

There are two existing approaches to approximating the Spearman's rank correlation coefficient from streaming data.[18][19] The first approach[18] involves coarsening the joint distribution of . For continuous values: cutpoints are selected for and respectively, discretizing these random variables. Default cutpoints are added at and . A count matrix of size , denoted , is then constructed where stores the number of observations that fall into the two-dimensional cell indexed by . For streaming data, when a new observation arrives, the appropriate element is incremented. The Spearman's rank correlation can then be computed, based on the count matrix , using linear algebra operations (Algorithm 2[18]). Note that for discrete random variables, no discretization procedure is necessary. This method is applicable to stationary streaming data as well as large data sets. For non-stationary streaming data, where the Spearman's rank correlation coefficient may change over time, the same procedure can be applied, but to a moving window of observations. When using a moving window, memory requirements grow linearly with chosen window size.

The second approach to approximating the Spearman's rank correlation coefficient from streaming data involves the use of Hermite series based estimators.[19] These estimators, based on Hermite polynomials, allow sequential estimation of the probability density function and cumulative distribution function in univariate and bivariate cases. Bivariate Hermite series density estimators and univariate Hermite series based cumulative distribution function estimators are plugged into a large sample version of the Spearman's rank correlation coefficient estimator, to give a sequential Spearman's correlation estimator. This estimator is phrased in terms of linear algebra operations for computational efficiency (equation (8) and algorithm 1 and 2[19]). These algorithms are only applicable to continuous random variable data, but have certain advantages over the count matrix approach in this setting. The first advantage is improved accuracy when applied to large numbers of observations. The second advantage is that the Spearman's rank correlation coefficient can be computed on non-stationary streams without relying on a moving window. Instead, the Hermite series based estimator uses an exponential weighting scheme to track time-varying Spearman's rank correlation from streaming data, which has constant memory requirements with respect to "effective" moving window size. A software implementation of these Hermite series based algorithms exists [20] and is discussed in Software implementations.

Software implementations

  • R's statistics base-package implements the test cor.test(x, y, method = "spearman") in its "stats" package (also cor(x, y, method = "spearman") will work. The package spearmanCI computes confidence intervals. The package hermiter[20] computes fast batch estimates of the Spearman correlation along with sequential estimates (i.e. estimates that are updated in an online/incremental manner as new observations are incorporated).
  • Stata implementation: spearman varlist calculates all pairwise correlation coefficients for all variables in varlist.
  • MATLAB implementation: [r,p] = corr(x,y,'Type','Spearman') where r is the Spearman's rank correlation coefficient, p is the p-value, and x and y are vectors.[21]
  • Python has many different implementations of the spearman correlation statistic: it can be computed with the spearmanr function of the scipy.stats module, as well as with the DataFrame.corr(method='spearman') method from the pandas library, and the corr(x, y, method='spearman') function from the statistical package pingouin.

See also

References

  1. ^ Spearman, C. (January 1904). "The Proof and Measurement of Association between Two Things" (PDF). The American Journal of Psychology. 15 (1): 72–101. doi:10.2307/1412159. JSTOR 1412159.
  2. ^ Scale types.
  3. ^ Lehman, Ann (2005). Jmp For Basic Univariate And Multivariate Statistics: A Step-by-step Guide. Cary, NC: SAS Press. p. 123. ISBN 978-1-59047-576-8.
  4. ^ Royal Geographic Society. "A Guide to Spearman's Rank" (PDF).
  5. ^ Nino Arsov; Milan Dukovski; Milan Dukovski; Blagoja Evkoski (November 2019). "A Measure of Similarity in Textual Data Using Spearman's Rank Correlation Coefficient".
  6. ^ Myers, Jerome L.; Well, Arnold D. (2003). Research Design and Statistical Analysis (2nd ed.). Lawrence Erlbaum. pp. 508. ISBN 978-0-8058-4037-7.
  7. ^ Dodge, Yadolah, ed. (2010). The Concise Encyclopedia of Statistics. New York, NY: Springer-Verlag. p. 502. ISBN 978-0-387-31742-7.
  8. ^ al Jaber, Ahmed Odeh; Elayyan, Haifaa Omar (2018). Toward Quality Assurance and Excellence in Higher Education. River Publishers. p. 284. ISBN 978-87-93609-54-9.
  9. ^ Yule, G. U.; Kendall, M. G. (1968) [1950]. An Introduction to the Theory of Statistics (14th ed.). Charles Griffin & Co. p. 268.
  10. ^ Piantadosi, J.; Howlett, P.; Boland, J. (2007). "Matching the grade correlation coefficient using a copula with maximum disorder". Journal of Industrial and Management Optimization. 3 (2): 305–312. doi:10.3934/jimo.2007.3.305.
  11. ^ de Carvalho, M.; Marques, F. (2012). "Jackknife Euclidean likelihood-based inference for Spearman's rho" (PDF). North American Actuarial Journal. 16 (4): 487‒492. doi:10.1080/10920277.2012.10597644. S2CID 55046385.
  12. ^ Choi, S. C. (1977). "Tests of Equality of Dependent Correlation Coefficients". Biometrika. 64 (3): 645–647. doi:10.1093/biomet/64.3.645.
  13. ^ Fieller, E. C.; Hartley, H. O.; Pearson, E. S. (1957). "Tests for rank correlation coefficients. I". Biometrika. 44 (3–4): 470–481. CiteSeerX 10.1.1.474.9634. doi:10.1093/biomet/44.3-4.470.
  14. ^ Press; Vettering; Teukolsky; Flannery (1992). Numerical Recipes in C: The Art of Scientific Computing (2nd ed.). Cambridge University Press. p. 640. ISBN 9780521437202.
  15. ^ Kendall, M. G.; Stuart, A. (1973). "Sections 31.19, 31.21". The Advanced Theory of Statistics, Volume 2: Inference and Relationship. Griffin. ISBN 978-0-85264-215-3.
  16. ^ Page, E. B. (1963). "Ordered hypotheses for multiple treatments: A significance test for linear ranks". Journal of the American Statistical Association. 58 (301): 216–230. doi:10.2307/2282965. JSTOR 2282965.
  17. ^ Kowalczyk, T.; Pleszczyńska, E.; Ruland, F., eds. (2004). Grade Models and Methods for Data Analysis with Applications for the Analysis of Data Populations. Studies in Fuzziness and Soft Computing. Vol. 151. Berlin Heidelberg New York: Springer Verlag. ISBN 978-3-540-21120-4.
  18. ^ a b c Xiao, W. (2019). "Novel Online Algorithms for Nonparametric Correlations with Application to Analyze Sensor Data". 2019 IEEE International Conference on Big Data (Big Data). pp. 404–412. doi:10.1109/BigData47090.2019.9006483. ISBN 978-1-7281-0858-2. S2CID 211298570.
  19. ^ a b c Stephanou, Michael; Varughese, Melvin (July 2021). "Sequential estimation of Spearman rank correlation using Hermite series estimators". Journal of Multivariate Analysis. 186: 104783. arXiv:2012.06287. doi:10.1016/j.jmva.2021.104783. S2CID 235742634.
  20. ^ a b Stephanou, M. and Varughese, M (2023). "Hermiter: R package for sequential nonparametric estimation". Computational Statistics. 39 (3): 1127–1163. arXiv:2111.14091. doi:10.1007/s00180-023-01382-0. S2CID 244715035.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ "Linear or rank correlation - MATLAB corr". www.mathworks.com.

Further reading

Read other articles:

Builder of custom trucks in Cortland, New York, 1912-1977 1914 Brockway model G with Continental engine 1929 Brockway Bus 1945 Brockway 78 G690 Treadway 6 ton 6×6 Brockway Motor Company was a builder of custom heavy-duty trucks in Cortland, New York, from 1912 to 1977. It was founded as Brockway Carriage Works in 1875 by William Brockway. His son George Brockway later turned the carriages into a truck manufacturer in 1909. The first trucks were high-wheelers. During World War I Brockway buil...

 

CartimanduaQueen of the BrigantesCartimandua.Berkuasac. AD 43 – c. AD 69PendahuluTidak diketahuiPenerusVenutiusAyahTidak diketahuiIbuTidak diketahuiPasanganVenutiusVellocatus Cartimandua atau Cartismandua (berkuasa c. 43 – 69) adalah ratu Brigantes, suku Seltik di wilayah yang kini merupakan Inggris Utara, pada abad ke-1. Ia berkuasa pada masa penaklukan Romawi di Britania dan membentuk aglomerasi suku besar yang setia pada Romawi. Ia dikenal dari karya sejarawan Romawi, Tacitus. Namanya ...

 

العلاقات الليختنشتانية المالطية ليختنشتاين مالطا   ليختنشتاين   مالطا تعديل مصدري - تعديل   العلاقات الليختنشتانية المالطية هي العلاقات الثنائية التي تجمع بين ليختنشتاين ومالطا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدول�...

مقاطعة سوفولك     الإحداثيات 40°56′N 72°41′W / 40.94°N 72.68°W / 40.94; -72.68  [1] تاريخ التأسيس 1683  سبب التسمية سوفولك  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى نيويورك  التقسيمات الإدارية هنتنغتونبابيلونسميثتاونآيسلببروكهيفن&...

 

First Gladstone ministry1868–1874Gladstone (1874)Date formed3 December 1868 (1868-12-03)Date dissolved17 February 1874 (1874-02-17)People and organisationsMonarchVictoriaPrime MinisterWilliam GladstoneTotal no. of members125 appointmentsMember partyLiberal PartyStatus in legislatureMajorityOpposition partyConservative PartyOpposition leadersBenjamin Disraeliin the House of CommonsLord Malmesbury (1868–1869)Lord Cairns (1869–1870)Duke of Richmond (1870–18...

 

Le Congrès de Paris en 1856Artiste Édouard Louis DubufeDate 1856Type Peinture d'histoireTechnique Peinture à l'huileMatériau huile sur toileDimensions (H × L) 308 × 510 cmNo d’inventaire MI 230, MV 1994, INV 10168Localisation Château de Versaillesmodifier - modifier le code - modifier Wikidata Le Congrès de Paris est une peinture à l'huile, réalisée le 1856 par le peintre français Édouard Dubufe[1]. Elle est exposée au Palais de Versailles. La pein...

History of trans people and cultures This article is about the history of transgender people worldwide. For the book, see Transgender History (book). Part of a series onTransgender topics      OutlineHistoryTimeline Gender identities Androgyne Bissu, Calabai, Calalai Burrnesha Cisgender Gender bender Hijra Non-binary or genderqueer Gender fluidity Kathoey Koekchuch Third gender Bakla Faʻafafine Femminiello Khanith Māhū Mudoko dako Mukhannath Muxe Travesti Two-spiri...

 

After My DeathNama lainHangul죄 많은 소녀 SutradaraKim Ui-seokSkenarioKim Ui-seokPemeranJeon Yeo-been Seo Young-hwa Go Won-heePenata musikSunwoo Jung-aSinematograferBaek Sung-binPenyuntingKim Ui-seokTanggal rilis Oktober 2017 (2017-10) (Busan) 13 September 2018 (2018-09-13) (Korea Selatan) Durasi113 menitNegaraKorea SelatanBahasaKorea After My Death (Hangul: 죄 많은 소녀; RR: Joe maneun sonyeo) adalah film drama misteri Korea Selat...

 

Finnish politician (1897–1961) Yrjö LeinoLeino in the late 1940s.Minister of the InteriorIn office26 March 1946 – 22 May 1948Prime MinisterMauno PekkalaPreceded byKaarlo HilliläSucceeded byEino KilpiMember of the Finnish ParliamentIn office18 March 1945 – 2 July 1951ConstituencyKuopio Personal detailsBornYrjö Kaarlo Leino(1897-01-28)28 January 1897Helsinki, Uusimaa, FinlandDied28 June 1961(1961-06-28) (aged 64)Political partyFinnish People's Democratic League Y...

Football clubFC Kolkheti 1913 PotiFounded1913; 111 years ago (1913)GroundFazisi StadiumPoti, GeorgiaCapacity6,000ChairmanZaza InashviliManagerKlimenti TsitaishviliLeagueErovnuli Liga20231st of 10 in Liga 2, promotedWebsiteClub website Home colours Away colours FC Kolkheti 1913 is a Georgian football club based in Poti. Following the 2023 season, the club earned promotion to the Erovnuli Liga, the top division of Georgian football. Being registered in 1913, Kolkheti is consi...

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

Public policy school of Carnegie Mellon University Heinz College of Information Systems and Public PolicyFormer namesSchool of Urban and Public Affairs (1968-1992)H. John Heinz III School of Public Policy and Management (1992-2008)TypePrivate graduate collegeEstablished1968Parent institutionCarnegie Mellon UniversityDeanRamayya KrishnanAcademic staff74[1]Postgraduates1,518[2]Doctoral students48[1]LocationPittsburgh, Pennsylvania, U.S.CampusNational Historic Landmark, U...

L'ALÉAC a été approuvé par le Costa Rica, la République Dominicaine, Le Salvador, le Guatemala, le Honduras, le Nicaragua et les États-Unis d'Amérique. LLes présidents Francisco Flores Pérez, Ricardo Maduro, George W. Bush, Abel Pacheco, Enrique Bolaños et Alfonso Portillo. L'accord de libre-échange entre l'Amérique centrale, les États-Unis d'Amérique et la République Dominicaine (communément appelé accord de libre-échange d'Amérique centrale, ALÉAC) est un traité ratifi�...

 

كفر الشيخ خليفة  -  قرية مصرية -  تقسيم إداري البلد  مصر المحافظة محافظة الشرقية المركز منيا القمح المسؤولون السكان التعداد السكاني 1885 نسمة (إحصاء 2006) معلومات أخرى التوقيت ت ع م+02:00  تعديل مصدري - تعديل   قرية كفر الشيخ خليفة هي إحدى القرى التابعة لمركز منيا ا...

 

Installation for charging electric vehicles For an infrastructure system of charging stations, see Electric vehicle network. Not to be confused with filling station. Charge point redirects here. For the company, see ChargePoint. Charging stations for electric vehicles: Top-left: a Tesla Roadster (2008) being charged at an electric charging station in Iwata city, Japan. Top-right: Brammo Empulse electric motorcycle at an AeroVironment charging station and Pay as you go electric vehicle chargin...

American legal scholar and political philosopher (born 1955) Robert P. GeorgeGeorge in 2018BornRobert Peter George (1955-07-10) July 10, 1955 (age 68)Morgantown, West Virginia, U.S.EducationSwarthmore College (BA)Harvard University (MTS, JD)Oxford University (DPhil, BCL, DCL)AwardsPresidential Citizens MedalCanterbury MedalIrving Kristol AwardPhilip Merrill AwardSidney Hook Memorial AwardJames Q. Wilson Award Bradley PrizeBarry PrizeEraContemporary philosophyRegionWestern philosophySchoo...

 

Wakil Wali Kota GunungsitoliPetahanaLowongsejak 9 Januari 2024Masa jabatan5 tahun dan dapat dipilih kembali untuk satu kali masa jabatanPejabat perdanaAroni ZendratöDibentuk13 April 2011; 13 tahun lalu (2011-04-13)Situs webSitus web resmi Wali Kota dalam tugas pemerintahannya dibantu oleh wakil kepala daerah dengan posisi kedua sebagai pendamping Wali Kota yang umumnya disebut Wakil Wali Kota. Wakil Wali Kota Gunungsitoli merupakan seorang politisi yang terpilih secara demokratis m...

 

Theatre lighting Spotlights in use at a music performance A spotlight A spotlight (or followspot) is a powerful stage lighting instrument which projects a bright beam of light onto a performance space.[1] Spotlights are controlled by a spotlight operator who tracks actors around the stage. Spotlights are most commonly used in concerts, musicals and large-scale presentations in which highlighting a specific mobile individual is critical. Spotlights are sometimes located overhead on cat...

海南省博物馆前门成立2008年地址 中国海南省海口市琼山区国兴大道68号坐标20°01′03″N 110°22′29″E / 20.01751°N 110.37459°E / 20.01751; 110.37459類型地方性综合博物馆網站http://www.hainanmuseum.org/ 海南省博物馆位于海南省海口市琼山区国兴大道68号,2008年11月15日正式开馆。该馆第一期工程占地面积约18000平方米,展厅面积约8000平方米;共有10个展厅,对海南的历...

 

Not to be confused with Ralph S. Moore. Ralph MooreBackground informationBorn (1956-12-24) 24 December 1956 (age 67)Brixton, London, EnglandGenresJazzOccupation(s)MusicianInstrument(s)SaxophoneYears active1981–presentLabelsReservoir, Criss Cross, Landmark, SavoyMusical artist Ralph Moore (born 24 December 1956)[1] is an English jazz saxophonist. Early life Moore was born in Brixton, London, England.[1][2] His mother was the dancer Josie Woods, and his father was...