Rearrangement inequality

In mathematics, the rearrangement inequality[1] states that for every choice of real numbers and every permutation of the numbers we have

Informally, this means that in these types of sums, the largest sum is achieved by pairing large values with large values, and the smallest sum is achieved by pairing small values with large values. This can be formalised in the case that the are distinct, meaning that then:

  1. The upper bound in (1) is attained only for permutations that keep the order of that is, or equivalently Such a can permute the indices of -values that are equal; in the case every permutation keeps the order of If then the only such is the identity.
  2. Correspondingly, the lower bound in (1) is attained only for permutations that reverse the order of meaning that If then for all is the only permutation to do this.

Note that the rearrangement inequality (1) makes no assumptions on the signs of the real numbers, unlike inequalities such as the arithmetic-geometric mean inequality.

Applications

Many important inequalities can be proved by the rearrangement inequality, such as the arithmetic mean – geometric mean inequality, the Cauchy–Schwarz inequality, and Chebyshev's sum inequality.

As a simple example, consider real numbers : By applying (1) with for all it follows that for every permutation of

Intuition

The rearrangement inequality can be regarded as intuitive in the following way. Imagine there is a heap of $10 bills, a heap of $20 bills and one more heap of $100 bills. You are allowed to take 7 bills from a heap of your choice and then the heap disappears. In the second round you are allowed to take 5 bills from another heap and the heap disappears. In the last round you may take 3 bills from the last heap. In what order do you want to choose the heaps to maximize your profit? Obviously, the best you can do is to gain dollars. This is exactly what the upper bound of the rearrangement inequality (1) says for the sequences and In this sense, it can be considered as an example of a greedy algorithm.

Geometric interpretation

Assume that and Consider a rectangle of width and height subdivided into columns of widths and the same number of rows of heights so there are small rectangles. You are supposed to take of these, one from each column and one from each row. The rearrangement inequality (1) says that you optimize the total area of your selection by taking the rectangles on the diagonal or the antidiagonal.

Proofs

Proof by contradiction

The lower bound and the corresponding discussion of equality follow by applying the results for the upper bound to , that is, let be any permutation of the numbers we have . Then, for every permutation of .

Therefore, it suffices to prove the upper bound in (1) and discuss when equality holds. Since there are only finitely many permutations of there exists at least one for which the middle term in (1) is maximal. In case there are several permutations with this property, let σ denote one with the highest number of integers from satisfying

We will now prove by contradiction, that has to keep the order of (then we are done with the upper bound in (1), because the identity has that property). Assume that there exists a such that for all and Hence and there has to exist a with to fill the gap. Therefore,

which implies that

Expanding this product and rearranging gives

which is equivalent to (3). Hence the permutation which arises from by exchanging the values and has at least one additional point which keeps the order compared to namely at satisfying and also attains the maximum in (1) due to (4). This contradicts the choice of

If then we have strict inequalities in (2), (3), and (4), hence the maximum can only be attained by permutations keeping the order of and every other permutation cannot be optimal.

Proof by induction

As above, it suffices to treat the upper bound in (1). For a proof by mathematical induction, we start with Observe that implies that

which is equivalent to

hence the upper bound in (1) is true for If then we get strict inequality in (5) and (6) if and only if Hence only the identity, which is the only permutation here keeping the order of gives the maximum.

As an induction hypothesis assume that the upper bound in the rearrangement inequality (1) is true for with and that in the case there is equality only when the permutation of keeps the order of

Consider now and Take a from the finite number of permutations of such that the rearrangement in the middle of (1) gives the maximal result. There are two cases:

  • If then and, using the induction hypothesis, the upper bound in (1) is true with equality and keeps the order of in the case
  • If then there is a with Define the permutation which arises from by exchanging the values of and There are now two subcases:
  1. If or then this exchange of values of has no effect on the middle term in (1) because gives the same sum, and we can proceed by applying the first case to Note that in the case the permutation keeps the order of if and only if does.
  2. If and then which is equivalent to and shows that is not optimal, hence this case cannot happen due to the choice of

Generalizations

Three or more sequences

A straightforward generalization takes into account more sequences. Assume we have finite ordered sequences of nonnegative real numbers and a permutation of and another permutation of Then

Note that, unlike the standard rearrangement inequality (1), this statement requires the numbers to be nonnegative. A similar statement is true for any number of sequences with all numbers nonnegative.

Functions instead of factors

Another generalization of the rearrangement inequality states that for all real numbers and every choice of continuously differentiable functions for such that their derivatives satisfy the inequality holds for every permutation of [2] Taking real numbers and the linear functions for real and the standard rearrangement inequality (1) is recovered.

See also

References

  1. ^ Hardy, G.H.; Littlewood, J.E.; Pólya, G. (1952), Inequalities, Cambridge Mathematical Library (2. ed.), Cambridge: Cambridge University Press, ISBN 0-521-05206-8, MR 0046395, Zbl 0047.05302, Section 10.2, Theorem 368
  2. ^ Holstermann, Jan (2017), "A Generalization of the Rearrangement Inequality" (PDF), Mathematical Reflections, no. 5 (2017)

Read other articles:

Santo Pedro CalungsodKatekis dan Martir Awam [1]Lahirsekitar 1655Wilayah Visayas, Filipina[2]Meninggal2 April 1672(1672-04-02) (umur 17) [2]Tumon, GuamDihormati diGereja KatolikBeatifikasi 5 Maret 2000, Basilika St. Petrus, Kota Vatikan oleh Paus Yohanes Paulus IIKanonisasi 21 Oktober 2012, Basilika St. Petrus, Kota Vatikan oleh Paus Benediktus XVITempat ziarahCebu Archdiocesan Shrine of Saint Pedro Calungsod, Archbishop's Residence Compound, 234 D. Jakosalem St.,...

 

Piala Raja Spanyol 1918Negara SpanyolJumlah peserta6Juara bertahanMadrid FCJuaraReal Unión(gelar ke-2)Tempat keduaMadrid FCJumlah pertandingan8Jumlah gol25 (3.13 per pertandingan)← 1917 1919 → Piala Raja Spanyol 1918 adalah edisi ke-16 dari penyelenggaraan Piala Raja Spanyol, turnamen sepak bola di Spanyol dengan sistem piala. Edisi ini dimenangkan oleh Real Unión setelah mengalahkan Madrid FC pada pertandingan final dengan skor 2–0. Final Artikel utama: Final Piala Raja Spanyol ...

 

Hyundai Santa FeInformasiProdusenHyundai Motor CompanyKia MotorsMasa produksi2000–sekarangBodi & rangkaKelasMid-size crossover SUVBentuk kerangkaSUV 5 pintuTata letakMesin depan, penggerak roda depan / 4WD Hyundai Santa Fe (Korea: 현대 싼타페code: ko is deprecated ) adalah crossover SUV mid-size yang basisnya diambil dari Hyundai Sonata. Namanya diambil dari kota Santa Fe, New Mexico, Amerika Serikat. Mobil ini pertama kali diperkenalkan tahun 2001 sebagai SUV pertama Hyundai,...

Ahmad Haydar Kepala Kepolisian Daerah AcehMasa jabatan26 Juli 2021 – 26 September 2023 PendahuluWahyu WidadaPenggantiAchmad KartikoKapuslabfor Bareskrim PolriMasa jabatan2 Agustus 2019 – 10 November 2020 PendahuluTidak DiketahuiPenggantiAgus BudihartaWakil Kepala Kepolisian Daerah JambiMasa jabatan7 Mei 2017 – 2 Agustus 2019 PendahuluMuchlis A.S.PenggantiCharles Bonardo Sadatua Nasution Informasi pribadiLahir9 September 1965 (umur 58)Kudus, Jawa TengahHub...

 

Dark AscensionTeaser posterSutradaraGene FallaizeProduserGene FallaizeTony CookScott Spiegel (executive)SkenarioGene FallaizeTony CookCeritaMarcus AkoTony CookPemeranBruce CampbellTara ReidSean YoungPaul BlackthorneBrian BlessedJillian MurrayMackenzie CrookPenata musikJoseph BennieSinematograferGeoff BoylePenyuntingDamian KnightPerusahaanproduksiCupsogue PicturesTanggal rilis Desember 2017 (2017-12) Durasi112 minutesNegaraUnited KingdomUnited StatesBahasaEnglishAnggaran£7.3 millio...

 

Artikel ini bukan mengenai Terminal Taman. Terminal TamananTerminal Penumpang Tipe APapan Nama Terminal TamananLokasiJalan Argo Wilis, Dusun Semen, Desa Semen, Kecamatan Semen, Kabupaten KediriProvinsi Jawa TimurKodepos 64161IndonesiaKoordinat7°49′45″S 111°59′03″E / 7.829086°S 111.984224°E / -7.829086; 111.984224Koordinat: 7°49′45″S 111°59′03″E / 7.829086°S 111.984224°E / -7.829086; 111.984224PemilikPemerintah Kota Kediri...

French immunologist (1916–2009) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2013) (Learn how and when to remove this template message) Jean DaussetBorn(1916-10-19)19 October 1916Toulouse, FranceDied6 June 2009(2009-06-06) (aged 92)Palma, Majorca, SpainEducationLycée MicheletAlma materUniversity of ParisKnown formajor histocompat...

 

دوري السوبر السلوفاكي 1999–2000 تفاصيل الموسم دوري السوبر السلوفاكي  النسخة 7  البلد سلوفاكيا  المنظم اتحاد سلوفاكيا لكرة القدم  البطل إنتر براتيسلافا  مباريات ملعوبة 240   عدد المشاركين 16   دوري السوبر السلوفاكي 1998–99  دوري السوبر السلوفاكي 2000–01  تعديل �...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

Reservoir in California, United States This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Crowley Lake – news · newspapers · books · scholar · JSTOR (November 2013) (Learn how and when to remove this message) Crowley LakeCrowley LakeShow map of CaliforniaCrowley LakeShow map of the United StatesLocationMono Cou...

 

Para otros usos de este término, véase Land's End. Para otros usos de este término, véase Finisterre. Lands End en San Francisco. Lands End es un parque en San Francisco (California) dentro del Área Nacional de Recreación Golden Gate. Se trata de una costa rocosa y azotada por el viento en la boca del Golden Gate, situada entre el distrito de Sutro District y el Lincoln Park y lindante con la Fort Miley Military Reservation. Es un lugar lleno de restos de naufragios y plagado de despre...

 

Fettuccine al Pesto alla genovese. Focaccia Masakan Liguria (cucina Ligure) adalah masakan yang berasal dari regione Liguria, Italia.[1] Seperti kebanyakan jenis masakan Italia lain, tradisi kuliner Liguria menggunakan bahan-bahan yang sederhana dan kualitas yang paling segar. Masakan Liguria menggunakan bahan herba-herba wangi, sayur-sayuran, minyak zaitun, dan makanan laut. Sejak dahulu regione ini telah dikenal sebagai tempat penghasil kue dan biskuit tradisional. Masakan khas Fari...

J.II Role Ground-attack aircraftType of aircraft Manufacturer Albatros Flugzeugwerke Primary user Luftstreitkräfte The Albatros J.II was a German single-engine, single-seat, biplane ground-attack aircraft of World War I. Design and development Albatros J.II was a development of the Albatros J.I with increased fuselage armour and a more powerful engine. The J.II dispensed with the propeller spinner of the earlier aircraft. Operators  German Empire Luftstreitkräfte  Lithuania ...

 

1806 revolt against the East India Company Vellore Sepoy MutinyPillar at Hazrath Makkaan Junction commemorating the Vellore sepoy mutiny.Date10 July 1806 (1806-07-10)Duration1 dayLocationVellore FortVellore, Madras Presidency, Company RajTypeMutinyCasualtiesIndian rebel sepoys: 100 summarily executed. Total 350 sepoys killed, 350 wounded.British officers of sepoy regiments: 14British soldiers of 69th Regiment: 115 The Vellore mutiny, or Vellore Revolution, occurred on 10 July 1...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. الوسام البحري هو وسام تمنحه الدولة اللبنانية. أنشئ بموجب المرسوم رقم 6929 تاريخ 7/1/ 1974 وهو يشتمل على أربع درجات: ممتازة، أولى، ثانية، ثالثة.[1] انظر أيضًا وسام الأرز وسام النس...

City in Kansas, United StatesLouisburg, KansasCityDowntown Louisburg (2018)Location within Miami County and KansasKDOT map of Miami County (legend)Coordinates: 38°37′13″N 94°40′38″W / 38.62028°N 94.67722°W / 38.62028; -94.67722[1]CountryUnited StatesStateKansasCountyMiamiGovernment • MayorDonna Cook[2]Area[3] • Total5.01 sq mi (12.98 km2) • Land4.89 sq mi (12.66 km2)&...

 

1916–1920 republic in Europe Autonomous Province of KorçëKrahina Autonome e Korçës (Albanian)1916–1920 FlagAlbania after its fragmentation in 1916[1]StatusProtectorate of FranceCapitalKorçëCommon languagesAlbanian, FrenchGovernment14-member local governmentPrefect of Police[2] • 1916-1920 Themistokli Gërmenji Historical eraWorld War I• Protocol signed December 10, 1916• French Army depart June 15, 1920 CurrencyKorçë frange Prece...

 

1983 American television miniseries ChiefsGenreDrama/Police proceduralWritten byRobert W. LenskiDirected byJerry LondonStarringKeith CarradineStephen CollinsBrad DavisDanny GloverTess HarperCharlton HestonWayne RogersPaul SorvinoBilly Dee WilliamsTheme music composerMichael SmallCountry of originUnited StatesNo. of episodes3ProductionProducersJerry LondonMartin ManulisJohn E. QuillEditorsEric AlbertsonJohn J. DumasArmond LebowitzRunning time6 hoursProduction companyLondon Films Inc.Original r...

Province of Panama Province in PanamaBocas del Toro Province Provincia de Bocas del ToroProvince FlagLocation of Bocas del Toro in PanamaBocas del Toro ProvinceCoordinates (Seat of Government): 9°20′26″N 82°14′26″W / 9.34056°N 82.24056°W / 9.34056; -82.24056Country PanamaFounded1903CapitalBocas del ToroArea • Total4,657.2 km2 (1,798.2 sq mi)Population (2023 census) • Total159,228 • Density34/k...

 

A copper concentric reducerA concentric reducer is used to join pipe sections or tube sections on the same axis.[1] The concentric reducer is cone-shaped, and is used when there is a shift in diameter between pipes.[1] For example, when a 1 pipe transitions into a 3/4 pipe and the top or bottom of the pipe doesn't need to remain level.[2] This pipe reducer may be used when there is a single diameter change or multiple diameter changes.[1] Unlike eccentric reduc...