Signed measure

In mathematics, a signed measure is a generalization of the concept of (positive) measure by allowing the set function to take negative values, i.e., to acquire sign.

Definition

There are two slightly different concepts of a signed measure, depending on whether or not one allows it to take infinite values. Signed measures are usually only allowed to take finite real values, while some textbooks allow them to take infinite values. To avoid confusion, this article will call these two cases "finite signed measures" and "extended signed measures".

Given a measurable space (that is, a set with a σ-algebra on it), an extended signed measure is a set function such that and is σ-additive – that is, it satisfies the equality for any sequence of disjoint sets in The series on the right must converge absolutely when the value of the left-hand side is finite. One consequence is that an extended signed measure can take or as a value, but not both. The expression is undefined[1] and must be avoided.

A finite signed measure (a.k.a. real measure) is defined in the same way, except that it is only allowed to take real values. That is, it cannot take or

Finite signed measures form a real vector space, while extended signed measures do not because they are not closed under addition. On the other hand, measures are extended signed measures, but are not in general finite signed measures.

Examples

Consider a non-negative measure on the space (X, Σ) and a measurable function f: XR such that

Then, a finite signed measure is given by

for all A in Σ.

This signed measure takes only finite values. To allow it to take +∞ as a value, one needs to replace the assumption about f being absolutely integrable with the more relaxed condition

where f(x) = max(−f(x), 0) is the negative part of f.

Properties

What follows are two results which will imply that an extended signed measure is the difference of two non-negative measures, and a finite signed measure is the difference of two finite non-negative measures.

The Hahn decomposition theorem states that given a signed measure μ, there exist two measurable sets P and N such that:

  1. PN = X and PN = ∅;
  2. μ(E) ≥ 0 for each E in Σ such that EP — in other words, P is a positive set;
  3. μ(E) ≤ 0 for each E in Σ such that EN — that is, N is a negative set.

Moreover, this decomposition is unique up to adding to/subtracting μ-null sets from P and N.

Consider then two non-negative measures μ+ and μ defined by

and

for all measurable sets E, that is, E in Σ.

One can check that both μ+ and μ are non-negative measures, with one taking only finite values, and are called the positive part and negative part of μ, respectively. One has that μ = μ+ − μ. The measure |μ| = μ+ + μ is called the variation of μ, and its maximum possible value, ||μ|| = |μ|(X), is called the total variation of μ.

This consequence of the Hahn decomposition theorem is called the Jordan decomposition. The measures μ+, μ and |μ| are independent of the choice of P and N in the Hahn decomposition theorem.

The space of signed measures

The sum of two finite signed measures is a finite signed measure, as is the product of a finite signed measure by a real number – that is, they are closed under linear combinations. It follows that the set of finite signed measures on a measurable space (X, Σ) is a real vector space; this is in contrast to positive measures, which are only closed under conical combinations, and thus form a convex cone but not a vector space. Furthermore, the total variation defines a norm in respect to which the space of finite signed measures becomes a Banach space. This space has even more structure, in that it can be shown to be a Dedekind complete Banach lattice and in so doing the Radon–Nikodym theorem can be shown to be a special case of the Freudenthal spectral theorem.

If X is a compact separable space, then the space of finite signed Baire measures is the dual of the real Banach space of all continuous real-valued functions on X, by the Riesz–Markov–Kakutani representation theorem.

See also

Notes

  1. ^ See the article "Extended real number line" for more information.

References

  • Bartle, Robert G. (1966), The Elements of Integration, New York: John Wiley and Sons, Zbl 0146.28201
  • Bhaskara Rao, K. P. S.; Bhaskara Rao, M. (1983), Theory of Charges: A Study of Finitely Additive Measures, Pure and Applied Mathematics, London: Academic Press, ISBN 0-12-095780-9, Zbl 0516.28001
  • Cohn, Donald L. (1997) [1980], Measure theory, Boston: Birkhäuser Verlag, ISBN 3-7643-3003-1, Zbl 0436.28001
  • Diestel, J. E.; Uhl, J. J. Jr. (1977), Vector measures, Mathematical Surveys and Monographs, vol. 15, Providence, R.I.: American Mathematical Society, ISBN 0-8218-1515-6, Zbl 0369.46039
  • Dunford, Nelson; Schwartz, Jacob T. (1959), Linear Operators. Part I: General Theory. Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space. Part III: Spectral Operators., Pure and Applied Mathematics, vol. 6, New York and London: Interscience Publishers, pp. XIV+858, ISBN 0-471-60848-3, Zbl 0084.10402
  • Dunford, Nelson; Schwartz, Jacob T. (1963), Linear Operators. Part I: General Theory. Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space. Part III: Spectral Operators., Pure and Applied Mathematics, vol. 7, New York and London: Interscience Publishers, pp. IX+859–1923, ISBN 0-471-60847-5, Zbl 0128.34803
  • Dunford, Nelson; Schwartz, Jacob T. (1971), Linear Operators. Part I: General Theory. Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space. Part III: Spectral Operators., Pure and Applied Mathematics, vol. 8, New York and London: Interscience Publishers, pp. XIX+1925–2592, ISBN 0-471-60846-7, Zbl 0243.47001
  • Zaanen, Adriaan C. (1996), Introduction to Operator Theory in Riesz spaces, Springer Publishing, ISBN 3-540-61989-5

This article incorporates material from the following PlanetMath articles, which are licensed under the Creative Commons Attribution/Share-Alike License: Signed measure, Hahn decomposition theorem, Jordan decomposition.

Read other articles:

Malam Putih (Rusia: Белые ночиcode: ru is deprecated , Belye nochi) adalah sebuah cerita pendek karya Fyodor Dostoevsky, yang aslinya diterbitkan pada 1848, pada awal kariernya sebagai penulis/ Seperti banyak cerita Dostoevsky, White Nights diceritakan dalam sudut pandang orang pertama oleh seorang narator tak bernama. Naratornya merupakan seorang pria muda yang tinggal di Saint Petersburg yang hidup dalam kesepian. Ia mengenal dan jatuh cinta dengan seorang wanita muda, tetapi cinta...

 

De'Aaron FoxFox pada tahun 2018No. 5 – Sacramento KingsPosisiPoint guardLigaNBAInformasi pribadiLahir20 Desember 1997 (umur 26)New Orleans, Louisiana, U.S.Tinggi6 ft 3 in (1,91 m)Berat185 pon (84 kg)Informasi karierSekolah menengah atasSMA Cypress Lakes (Katy, Texas)Perguruan tinggiKentucky (2016–2017)Draf NBA2017 / Babak: 1 / Urutan pemilihan: ke-5 secara keseluruhanDipilih oleh Sacramento KingsKarier bermain2017–sekarangRiwayat karier2017–kiniSa...

 

Ali Alipour Alipour pada tahun 2020Informasi pribadiNama lengkap Ali Alipour GharaTanggal lahir 11 November 1995 (umur 28)Tempat lahir Qaem Shahr, IranTinggi 181 m (593 ft 10 in)Posisi bermain PenyerangInformasi klubKlub saat ini Gil VicenteNomor 70Karier junior2007–2012 Nassaji Mazandaran2011–2012 → Steel Azin (loan)Karier senior*Tahun Tim Tampil (Gol)2012–2013 Sang Ahan Bafq 25 (3)2013–2014 Rah Ahan 25 (3)2014–2020 Persepolis 153 (54)2020-2022 Marítimo 60 (...

Australian politician The Right HonourableSir Philip McBrideKCMG, PCMinister for DefenceIn office24 October 1950 – 10 December 1958Preceded byEric HarrisonSucceeded byAthol TownleyMember of the Australian Parliamentfor GreyIn office19 December 1931 – 21 September 1937Preceded byAndrew LaceySucceeded byOliver BadmanSenator for South AustraliaIn office21 October 1937 – 30 June 1944Preceded byOliver BadmanMember of the Australian Parliamentfor WakefieldIn...

 

Uppslagsordet ”WHO” leder hit. För andra betydelser, se Who. منظمة الصحة العالمية (arabiska) 世界卫生组织 (kinesiska) World Health Organization (engelska) Organización Mundial de la Salud (spanska) Organisation mondiale de la santé (franska) Всемирная организация здравоохранения (ryska) Världshälsoorganisationens flaggaOrganisationstypfackorganFörkortningarWHOOMSGeneraldirektörTedros Adhanom, Director-General...

 

British political party UK Independence Party AbbreviationUKIPLeaderNeil Hamilton[1]ChairmanBen WalkerGeneral SecretaryDonald Mackay[2]TreasurerIan Garbutt[2]FounderAlan SkedFounded3 September 1993; 30 years ago (1993-09-03)Preceded byAnti-Federalist LeagueHeadquartersHenleaze Business Centre, 13 Harbury Road, Henleaze, Bristol, BS9 4PN[3]Youth wingYoung IndependenceMembership (2020) 3,888[4]IdeologyEuroscepticism[5][6...

Republik SpanyolRepública Española1873–1874 Bendera Lambang Semboyan: Plus UltraLagu kebangsaan: Himno de Riego Ibu kotaMadridBahasa yang umum digunakanSpanishAgama Katolik RomaPemerintahanRepublikPresiden • 1873 Estanislao Figueras• 1873 Francisco Pi y Margall• 1873 Nicolás Salmerón• 1873–1874 Emilio Castelar• 1874 Francisco Serrano Perdana Menteri • 1874 Juan de Zavala• 1874 P. Mateo Sagasta LegislatifKongres ...

 

Latvian politician and economist Andris AmeriksMEPAmeriks in 2009Member of the European ParliamentIncumbentAssumed office 2019Deputy Mayor of RigaIn office9 November 2010 – 17 December 2018Preceded byAinārs ŠlesersSucceeded byOļegs BurovsMember of the Speaker of the SaeimaIn office7 November 1995 – 1 November 1998 Personal detailsBorn (1961-03-05) 5 March 1961 (age 63)Jūrmala, Latvia, Soviet UnionPolitical partyHonor to serve Riga (since 2012)SpouseGinta Ame...

 

Alan Hale Sr.Hale pada 1922LahirRufus Edward Mackahan(1892-02-10)10 Februari 1892Washington, D.C.Meninggal22 Januari 1950(1950-01-22) (umur 57)Hollywood, CaliforniaPekerjaanPemeran, sutradaraTahun aktif1899–1950Suami/istriGretchen Hartman ​(m. 1914)​Anak3, termasuk Alan Hale Jr. Charles Boyer, Stanley Fields dan Hale dalam film Algiers (1938) Kiri ke kanan: Guinn Big Boy Williams, Hale, Ronald Reagan, dan Errol Flynn dalam Santa Fe Trail (1940) Alan H...

Cet article concerne un événement en cours. Ces informations peuvent manquer de recul, changer à mesure que l’événement progresse ou ne pas prendre en compte des développements récents. Le titre lui-même peut être provisoire. N’hésitez pas à l’améliorer en veillant à citer vos sources.La dernière modification de cette page a été faite le 30 mars 2024 à 10:09. 118e congrès des États-Unis Le Capitole des États-Unis, où se réunit le Congrès. 3 janvier 2023 – 3 jan...

 

خواطر 10 التعليق شعار الموسم اهدنا الصراط المستقيم النوع تعليم · ديني السلسلة خواطر (الترتيب: 10)  تطوير أحمد الشقيري كتابة أحمد الشقيري الموسيقى الختامية أداء: حسين الجسمي البلد  السعودية لغة العمل العربية عدد الحلقات 30 الإنتاج مواقع التصوير {{{1}}}  اليابان&#...

 

United States historic placeRegina Coeli MonasteryU.S. National Register of Historic Places Show map of IowaShow map of the United StatesLocation1401 Central AvenueBettendorf, IowaCoordinates41°31′51″N 90°30′45″W / 41.53083°N 90.51250°W / 41.53083; -90.51250Area2 acres (0.81 ha)Built1916ArchitectArthur EbelingArchitectural styleMission/Spanish RevivalLate Gothic RevivalRomanesqueNRHP reference No.93001590[1]Added to NRHPJanuary ...

Ducato di Gheldria Dati amministrativiNome completoDucato di Gheldria Nome ufficiale(NL) Hertogdom Gelre(DE) Herzogtum Geldern Lingue parlatetedesco, olandese CapitaleGheldria (1096-1347)Nimega (1347-1543) Dipendente da Sacro Romano Impero Dipendenze Contea di Zutphen PoliticaForma di StatoMonarchia feudale Forma di governoDucato Nascita1339 con Rinaldo II di Gheldria [1] Fine1543 CausaTrattato di Venlo Territorio e popolazioneBacino geograficoRenania Settentrionale-Vestfalia, Gheldri...

 

JackieNatalie Portman nei panni di Jackie Kennedy in una scena del filmTitolo originaleJackie Lingua originaleinglese, spagnolo Paese di produzioneStati Uniti d'America, Cile, Francia Anno2016 Durata99 min Rapporto1,66:1 Generedrammatico, biografico RegiaPablo Larraín SceneggiaturaNoah Oppenheim ProduttoreDarren Aronofsky, Juan de Dios Larraín, Mickey Liddell, Scott Franklin, Ari Handel Produttore esecutivoPete Shilaimon, Jennifer Monroe, Jayne Hong, Wei Han, Lin Qi, Josh Stern ...

 

Third division of the Tripitaka or Pali Canon of Theravada Buddhism Abhidhamma PiṭakaTypeCanonical textParent CollectionTipitakaContainsDhammasaṅgaṇī, Vibhaṅga, Dhātukathā, Puggalapaññatti, Kathāvatthu, Yamaka, PaṭṭhānaCommentaryAtthasālinīPāli literature Pāli Canon 1. Vinaya Piṭaka 1. Suttavibhaṅga 2. Khandhaka 3. Parivāra 2. Sutta Piṭaka 1. Dīgha Nikāya 2. Majjhima Nikāya 3. Saṃyutta Nikāya 4. Aṅguttara Nikāya 5. Khuddaka Nikāya 3. Abhidhamma Piṭaka...

Lumban BalikDesaPeta lokasi Desa Lumban BalikNegara IndonesiaProvinsiSumatera UtaraKabupatenTobaKecamatanHabinsaranKode pos22383Kode Kemendagri12.12.04.2006 Luas29,75 km²Jumlah penduduk279 jiwa (2016)Kepadatan9,38 jiwa/km² Lumban Balik adalah salah satu desa di Kecamatan Habinsaran, Kabupaten Toba, Provinsi Sumatera Utara, Indonesia. Pemerintahan Kepala Desa Lumban Balik pada tahun 2021 adalah Marihot Sianipar.[1] Sosial Kemasyarakatan Suku Mayoritas penduduk Desa Lumban Balik ...

 

Alexander Dargomyzhsky(lukisan oleh Konstantin Makovsky, 1869) Alexander Sergeyevich Dargomyzhsky (bahasa Rusia: Алекса́ндр Серге́евич Даргомы́жский); lahir di Tula pada 14 Februari 1813, meninggal di St. Petersburg pada 17 Januari 1869) adalah seorang komponis kenamaan Rusia.[1] Ia merupakan pencipta musik opera, musik balet, musik paduan suara, dan lagu-lagu serta musik untuk piano.[1] Satu di antara opera karyanya, berjudul The Stone Gue...

 

Canada's contemporary theatre This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Theatre of Canada – news · newspapers · books · scholar · JSTOR (November 2011) (Learn how and when to remove this message) Part of a series on theCulture of Canada History Canadians Ethnicity Folklore Free expression Identity Immi...

一中同表,是台灣处理海峡两岸关系问题的一种主張,認為中华人民共和国與中華民國皆是“整個中國”的一部份,二者因為兩岸現狀,在各自领域有完整的管辖权,互不隶属,同时主張,二者合作便可以搁置对“整个中國”的主权的争议,共同承認雙方皆是中國的一部份,在此基礎上走向終極統一。最早是在2004年由台灣大學政治学教授張亞中所提出,希望兩岸由一中各表�...

 

1655 painting by Rembrandt Portrait of Jeremias de Decker is a 1655 oil on panel painting by Rembrandt of the poet Jeremias de Decker. It is now in the Hermitage Museum. Sources http://www.hermitagemuseum.org/fcgi-bin/db2www/descrPage.mac/descrPage?selLang=English&indexClass=PICTURE_EN&PID=GJ-748&numView=1&ID_NUM=44&thumbFile=%2Ftmplobs%2FKGCZ_40O_40ZNKW_40218B6.jpg&embViewVer=last&comeFrom=quick Authority control databases RKD ID