Lifting theory

In mathematics, lifting theory was first introduced by John von Neumann in a pioneering paper from 1931, in which he answered a question raised by Alfréd Haar.[1] The theory was further developed by Dorothy Maharam (1958)[2] and by Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea (1961).[3] Lifting theory was motivated to a large extent by its striking applications. Its development up to 1969 was described in a monograph of the Ionescu Tulceas.[4] Lifting theory continued to develop since then, yielding new results and applications.

Definitions

A lifting on a measure space is a linear and multiplicative operator which is a right inverse of the quotient map

where is the seminormed Lp space of measurable functions and is its usual normed quotient. In other words, a lifting picks from every equivalence class of bounded measurable functions modulo negligible functions a representative— which is henceforth written or or simply — in such a way that and for all and all

Liftings are used to produce disintegrations of measures, for instance conditional probability distributions given continuous random variables, and fibrations of Lebesgue measure on the level sets of a function.

Existence of liftings

Theorem. Suppose is complete.[5] Then admits a lifting if and only if there exists a collection of mutually disjoint integrable sets in whose union is In particular, if is the completion of a σ-finite[6] measure or of an inner regular Borel measure on a locally compact space, then admits a lifting.

The proof consists in extending a lifting to ever larger sub-σ-algebras, applying Doob's martingale convergence theorem if one encounters a countable chain in the process.

Strong liftings

Suppose is complete and is equipped with a completely regular Hausdorff topology such that the union of any collection of negligible open sets is again negligible – this is the case if is σ-finite or comes from a Radon measure. Then the support of can be defined as the complement of the largest negligible open subset, and the collection of bounded continuous functions belongs to

A strong lifting for is a lifting such that on for all in This is the same as requiring that[7] for all open sets in

Theorem. If is σ-finite and complete and has a countable basis then admits a strong lifting.

Proof. Let be a lifting for and a countable basis for For any point in the negligible set let be any character[8] on that extends the character of Then for in and in define: is the desired strong lifting.

Application: disintegration of a measure

Suppose and are σ-finite measure spaces ( positive) and is a measurable map. A disintegration of along with respect to is a slew of positive σ-additive measures on such that

  1. is carried by the fiber of over , i.e. and for almost all
  2. for every -integrable function in the sense that, for -almost all in is -integrable, the function is -integrable, and the displayed equality holds.

Disintegrations exist in various circumstances, the proofs varying but almost all using strong liftings. Here is a rather general result. Its short proof gives the general flavor.

Theorem. Suppose is a Polish space[9] and a separable Hausdorff space, both equipped with their Borel σ-algebras. Let be a σ-finite Borel measure on and a measurable map. Then there exists a σ-finite Borel measure on and a disintegration (*). If is finite, can be taken to be the pushforward[10] and then the are probabilities.

Proof. Because of the polish nature of there is a sequence of compact subsets of that are mutually disjoint, whose union has negligible complement, and on which is continuous. This observation reduces the problem to the case that both and are compact and is continuous, and Complete under and fix a strong lifting for Given a bounded -measurable function let denote its conditional expectation under that is, the Radon-Nikodym derivative of[11] with respect to Then set, for every in To show that this defines a disintegration is a matter of bookkeeping and a suitable Fubini theorem. To see how the strongness of the lifting enters, note that and take the infimum over all positive in with it becomes apparent that the support of lies in the fiber over

References

  1. ^ von Neumann, John (1931). "Algebraische Repräsentanten der Funktionen "bis auf eine Menge vom Maße Null"". Journal für die reine und angewandte Mathematik (in German). 1931 (165): 109–115. doi:10.1515/crll.1931.165.109. MR 1581278.
  2. ^ Maharam, Dorothy (1958). "On a theorem of von Neumann". Proceedings of the American Mathematical Society. 9 (6): 987–994. doi:10.2307/2033342. JSTOR 2033342. MR 0105479.
  3. ^ Ionescu Tulcea, Alexandra; Ionescu Tulcea, Cassius (1961). "On the lifting property. I." Journal of Mathematical Analysis and Applications. 3 (3): 537–546. doi:10.1016/0022-247X(61)90075-0. MR 0150256.
  4. ^ Ionescu Tulcea, Alexandra; Ionescu Tulcea, Cassius (1969). Topics in the theory of lifting. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 48. New York: Springer-Verlag. MR 0276438. OCLC 851370324.
  5. ^ A subset is locally negligible if it intersects every integrable set in in a subset of a negligible set of is complete if every locally negligible set is negligible and belongs to
  6. ^ i.e., there exists a countable collection of integrable sets – sets of finite measure in – that covers the underlying set
  7. ^ are identified with their indicator functions.
  8. ^ A character on a unital algebra is a multiplicative linear functional with values in the coefficient field that maps the unit to 1.
  9. ^ A separable space is Polish if its topology comes from a complete metric. In the present situation it would be sufficient to require that is Suslin, that is, is the continuous Hausdorff image of a Polish space.
  10. ^ The pushforward of under also called the image of under and denoted is the measure on defined by for in .
  11. ^ is the measure that has density with respect to

Read other articles:

Sensation that causes desire or reflex to scratch For other uses, see Itch (disambiguation). Medical conditionItchA man scratching his backSpecialtyDermatologySymptomsCompulsion to scratch an irritated area of skinCausesCertain infections, allergies, blood derangements and environmental factorsRisk factorsDry skinDiagnostic methodOften based on the causes of itchingDifferential diagnosisPainTreatmentAntipruritics, phototherapy Itch (also known as pruritus) is a sensation that causes a strong ...

 

 

The Committee of Imperial Defence was an important ad hoc part of the Government of the United Kingdom and the British Empire from just after the Second Boer War until the start of the Second World War. It was responsible for research, and some co-ordination, on issues of military strategy. Typically, a temporary sub-committee would be set up to investigate and report at length on a specific topic. Many such sub-committees were engendered over the decades, on topics such as foreign espionage...

 

 

National rugby union team RomaniaNickname(s)Stejarii (The Oaks)EmblemOak leafUnionRomanian Rugby FederationHead coachDavid GérardCaptainOvidiu CojocaruMost capsFlorin Vlaicu (129)Top scorerFlorin Vlaicu (1,030)Top try scorerCătălin Fercu (33)Home stadiumStadionul Arcul de Triumf First colours Second colours World Rugby rankingCurrent20 (as of 11 March 2024)Highest13 (2003, 2004, 2005, 2006)Lowest20 (2019, 2022, 2023, 2024)First international United States 23–0 Romania (Paris, F...

Peta County di Estonia County (bahasa Estonia:maakon, jamak:maakonnad) adalah wilayah administratif tingkat satu di Estonia. Ada 15 county di Estonia, tiga belas di antaranya terletak di daratan utama sementara dua lainnya di pulau. County dipimpin oleh seorang maavanem (gubernur) yang ditunjuk oleh pemerintah pusat setiap lima tahun sekali. Tiap county dibagi menjadi munisipalitas. Ada dua jenis munisipalitas, yaitu munisipalitas urban (kota, linnad) dan munisipalitas rural (parish, vallad)....

 

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

 

 

British auto racing team This article is about the Formula One team. For the parent company and subsidiaries including McLaren Automotive, see McLaren Group. For other uses, see McLaren (disambiguation). McLaren-MercedesFull nameMcLaren Formula 1 Team[1]BaseMcLaren Technology CentreWoking, Surrey, England, UKTeam principal(s)Zak Brown(Chief Executive Officer)Andrea Stella(Team Principal)Technical director(s)Rob Marshall[2](Chief Designer)Neil Houldey[2](Technical Direc...

Commencement Bay-class escort carrier of the US Navy Badoeng Strait operating helicopters in 1954 History United States NameBadoeng Strait NamesakeBattle of Badung Strait BuilderTodd-Pacific Shipyards Laid down18 August 1944 Launched15 February 1945 Commissioned14 November 1945 Decommissioned20 April 1946 Recommissioned6 January 1947 Decommissioned17 May 1957 RefitApril–September 1953 FateSold and scrapped 1972 General characteristics Class and typeCommencement Bay-class escort carrier Disp...

 

 

Hot in ClevelandImmagine dalla sigla della serieTitolo originaleHot in Cleveland PaeseStati Uniti d'America Anno2010-2015 Formatoserie TV Generesitcom Stagioni6 Episodi128 Durata22 min (episodio)45 min (finale di serie) Lingua originaleinglese Rapporto16:9 CreditiIdeatoreSuzanne Martin Interpreti e personaggi Valerie Bertinelli: Melanie Hope Moretti Jane Leeves: Rejoyla Joy Scroggs Wendie Malick: Victoria Chase Betty White: Elka Ostrovsky Doppiatori e personaggi Antonella Baldini: Melanie Hop...

 

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (février 2023). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels de notes. Pour les articles homonymes, voir Montmorency. Ma...

English private healthcare company Ramsay Health Care UKIndustryHealthFounded2007FounderPaul RamsayHeadquartersLondon, United KingdomNumber of locations36Key peopleAndrew Jones (CEO) [1]ServicesHealth careParentRamsay Health Care Websitewww.ramsayhealth.co.uk Ramsay Health Care UK is a healthcare company based in the United Kingdom. It was founded by Australian businessman Paul Ramsay, who established its parent company: Ramsay Health Care, in Sydney, Australia, in 1964 and has g...

 

 

Convenzione di FiladelfiaTipotrattato politico Firma25 settembre 1787 LuogoFiladelfia PartiWilliam Samuel JohnsonRoger ShermanOliver EllsworthAlexander HamiltonJohn Lansing, Jr.Robert YatesGeorge ReadGunning Bedford, Jr.John DickinsonRichard BassettRichard Dobbs SpaightWilliam BlountHugh WilliamsonWilliam Richardson DavieAlexander MartinWilliam FewAbraham Baldwin e William Houstoun voci di trattati presenti su Wikipedia La Convenzione di Filadelfia (in inglese Philadelphia Convention) fu una ...

 

 

Italian flagship sports car produced by Ferrari from 1995–1997 Motor vehicle Ferrari F50OverviewManufacturerFerrari S.p.A.Production1995–1997 [1] 349 producedAssemblyMaranello, ItalyDesignerPietro Camardella[2] and Lorenzo Ramaciotti[3] at PininfarinaBody and chassisClassSports car (S)Body style2-door Targa topLayoutRear mid-engine, rear-wheel-driveRelatedFerrari 333 SPFerrari F50 GTPowertrainEngine4.7L DOHC 65 degree Tipo F130B V12[4][5]Power&...

1978 Indian filmPadaharella VayasuDirected byK. Raghavendra RaoWritten bySatyanand (dialogues)Story byBharathirajaBased on16 Vayathinile (Tamil)Produced byAngara SathyamStarringChandra Mohan Mohan Babu Sridevi NirmalammaCinematographyK. S. PrakashMusic byK. ChakravarthyRelease date 31 August 1978 (1978-08-31)[1] CountryIndiaLanguageTelugu Padaharella Vayasu (transl. 16 years of age) is a 1978 Indian Telugu-language romantic drama film starring Chandra Mohan, Srid...

 

 

County in Washington, United States County in WashingtonSkagit CountyCountySkagit County Courthouse SealLocation within the U.S. state of WashingtonWashington's location within the U.S.Coordinates: 48°29′N 121°47′W / 48.48°N 121.78°W / 48.48; -121.78Country United StatesState WashingtonFoundedNovember 28, 1883Named forSkagit tribesSeatMount VernonLargest cityMount VernonArea • Total1,920 sq mi (5,000 km2) • Land1...

 

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (mars 2013). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? Comm...

Difference between absorption and emission peak maxima Not to be confused with Stark shift. Diagram of the Stokes shift between absorption and emission light spectra Stokes shift is the difference (in energy, wavenumber or frequency units) between positions of the band maxima of the absorption and emission spectra (fluorescence and Raman being two examples) of the same electronic transition.[1] It is named after Irish physicist George Gabriel Stokes.[2][3][4] F...

 

 

County in Indiana, United States Huntington County redirects here. Not to be confused with Huntingdon County, Pennsylvania. County in IndianaHuntington CountyCountyHuntington County Courthouse in HuntingtonLocation within the U.S. state of IndianaIndiana's location within the U.S.Coordinates: 40°50′N 85°29′W / 40.83°N 85.49°W / 40.83; -85.49Country United StatesState IndianaFoundedFebruary 2, 1832 (authorized)May 5, 1834 (organized)Named forSamuel Hun...

 

 

別大線 大分駅前停留所に止まる別大電車概要現況 廃止起終点 起点:大分駅前停留場終点:亀川駅前停留場運営開業 1900年5月10日 (1900-05-10)廃止 1972年4月5日 (1972-4-5)所有者 豊州電気鉄道→豊後電気鉄道→九州水力電気→別府大分電鉄→大分交通使用車両 車両の節を参照路線諸元路線総延長 18.4 km (11.4 mi)(1969年3月時点)軌間 1,067 mm (3 ft 6 ...

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (mars 2019). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? Comm...

 

 

Questa voce o sezione sull'argomento militari tedeschi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Questa voce sull'argomento militari tedeschi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Johann Viktor KirschKirsch catturato dagli Alleati nel 1945NascitaMarpingen, 15 febbraio 1891 MorteLandsberg am Lec...