Non-measurable set

In mathematics, a non-measurable set is a set which cannot be assigned a meaningful "volume". The existence of such sets is construed to provide information about the notions of length, area and volume in formal set theory. In Zermelo–Fraenkel set theory, the axiom of choice entails that non-measurable subsets of exist.

The notion of a non-measurable set has been a source of great controversy since its introduction. Historically, this led Borel and Kolmogorov to formulate probability theory on sets which are constrained to be measurable. The measurable sets on the line are iterated countable unions and intersections of intervals (called Borel sets) plus-minus null sets. These sets are rich enough to include every conceivable definition of a set that arises in standard mathematics, but they require a lot of formalism to prove that sets are measurable.

In 1970, Robert M. Solovay constructed the Solovay model, which shows that it is consistent with standard set theory without uncountable choice, that all subsets of the reals are measurable. However, Solovay's result depends on the existence of an inaccessible cardinal, whose existence and consistency cannot be proved within standard set theory.

Historical constructions

The first indication that there might be a problem in defining length for an arbitrary set came from Vitali's theorem.[1] A more recent combinatorial construction which is similar to the construction by Robin Thomas of a non-Lebesgue measurable set with some additional properties appeared in American Mathematical Monthly.[2]

One would expect the measure of the union of two disjoint sets to be the sum of the measure of the two sets. A measure with this natural property is called finitely additive. While a finitely additive measure is sufficient for most intuition of area, and is analogous to Riemann integration, it is considered insufficient for probability, because conventional modern treatments of sequences of events or random variables demand countable additivity.

In this respect, the plane is similar to the line; there is a finitely additive measure, extending Lebesgue measure, which is invariant under all isometries. For higher dimensions the picture gets worse. The Hausdorff paradox and Banach–Tarski paradox show that a three-dimensional ball of radius 1 can be dissected into 5 parts which can be reassembled to form two balls of radius 1.

Example

Consider the set of all points in the unit circle, and the action on by a group consisting of all rational rotations (rotations by angles which are rational multiples of ). Here is countable (more specifically, is isomorphic to ) while is uncountable. Hence breaks up into uncountably many orbits under (the orbit of is the countable set ). Using the axiom of choice, we could pick a single point from each orbit, obtaining an uncountable subset with the property that all of the rational translates (translated copies of the form for some rational )[3] of by are pairwise disjoint (meaning, disjoint from and from each other). The set of those translates partitions the circle into a countable collection of disjoint sets, which are all pairwise congruent (by rational rotations). The set will be non-measurable for any rotation-invariant countably additive probability measure on : if has zero measure, countable additivity would imply that the whole circle has zero measure. If has positive measure, countable additivity would show that the circle has infinite measure.

Consistent definitions of measure and probability

The Banach–Tarski paradox shows that there is no way to define volume in three dimensions unless one of the following five concessions is made:[citation needed]

  1. The volume of a set might change when it is rotated.
  2. The volume of the union of two disjoint sets might be different from the sum of their volumes.
  3. Some sets might be tagged "non-measurable", and one would need to check whether a set is "measurable" before talking about its volume.
  4. The axioms of ZFC (Zermelo–Fraenkel set theory with the axiom of choice) might have to be altered.
  5. The volume of is or .

Standard measure theory takes the third option. One defines a family of measurable sets, which is very rich, and almost any set explicitly defined in most branches of mathematics will be among this family.[citation needed] It is usually very easy to prove that a given specific subset of the geometric plane is measurable.[citation needed] The fundamental assumption is that a countably infinite sequence of disjoint sets satisfies the sum formula, a property called σ-additivity.

In 1970, Solovay demonstrated that the existence of a non-measurable set for the Lebesgue measure is not provable within the framework of Zermelo–Fraenkel set theory in the absence of an additional axiom (such as the axiom of choice), by showing that (assuming the consistency of an inaccessible cardinal) there is a model of ZF, called Solovay's model, in which countable choice holds, every set is Lebesgue measurable and in which the full axiom of choice fails.[citation needed]

The axiom of choice is equivalent to a fundamental result of point-set topology, Tychonoff's theorem, and also to the conjunction of two fundamental results of functional analysis, the Banach–Alaoglu theorem and the Krein–Milman theorem.[citation needed] It also affects the study of infinite groups to a large extent, as well as ring and order theory (see Boolean prime ideal theorem).[citation needed] However, the axioms of determinacy and dependent choice together are sufficient for most geometric measure theory, potential theory, Fourier series and Fourier transforms, while making all subsets of the real line Lebesgue-measurable.[citation needed]

See also

References

Notes

  1. ^ Moore, Gregory H., Zermelo's Axiom of Choice, Springer-Verlag, 1982, pp. 100–101
  2. ^ Sadhukhan, A. (December 2022). "A Combinatorial Proof of the Existence of Dense Subsets in without the "Steinhaus" like Property". Am. Math. Mon. 130 (2): 175. arXiv:2201.03735. doi:10.1080/00029890.2022.2144665.
  3. ^ Ábrego, Bernardo M.; Fernández-Merchant, Silvia; Llano, Bernardo (January 2010). "On the Maximum Number of Translates in a Point Set". Discrete & Computational Geometry. 43 (1): 1–20. doi:10.1007/s00454-008-9111-9. ISSN 0179-5376.

Bibliography

Read other articles:

Ini adalah nama Jepang, nama keluarganya adalah Miyawaki. Sakura MiyawakiMiyawaki Sakura pada April 2021Nama asal宮脇 咲良Lahir19 Maret 1998 (umur 25)Kagoshima, JepangNama lainSakuraPekerjaanPenyanyiAktrisTahun aktif2008[1]–sekarangKarier musikGenreJ-popK-popInstrumenVocalsLabelAKS (2011-2021)Off The Record Entertainment (2018-2021)Source Music (2022-sekarang)A.M Entertainment (2022-sekarang)Artis terkaitHKT48AKB48Iz*OneLe SserafimInformasi YouTubeKanal Chann...

 

BhimtalKotaprajaPemandangan BhimtalBhimtalLokasi di Uttarakhand, IndiaTampilkan peta UttarakhandBhimtalBhimtal (India)Tampilkan peta IndiaKoordinat: 29°21′00″N 79°34′00″E / 29.35°N 79.5667°E / 29.35; 79.5667Koordinat: 29°21′00″N 79°34′00″E / 29.35°N 79.5667°E / 29.35; 79.5667Country IndiaNegara bagianUttarakhandDistrikNainitalPopulasi (2011) • Total7.722Bahasa • ResmiHindi, Kumaoni, Garhw...

 

Pour l’article homonyme, voir Côte rôtie. Côte-rôtie Parcelles de Côte-rôtie. Désignation(s) Côte-rôtie Appellation(s) principale(s) côte-rôtie Type d'appellation(s) AOC Reconnue depuis 1940 Pays France Région parente vignoble de la vallée du Rhône Sous-région(s) vallée du Rhône septentrionale Localisation Rhône Climat tempéré méditerranéen dégradé avec influence continentale Sol terrasses très escarpées, micaschistes au nord, leucogneiss au sud et migmatite sombr...

CDP in Nevada, United StatesSpring Creek, NevadaCDPView of Spring Creek from E Mountain, with the Ruby Mountains in the backgroundLocation of Spring Creek within NevadaCoordinates: 40°44′48″N 115°35′34″W / 40.74667°N 115.59278°W / 40.74667; -115.59278CountryUnited StatesStateNevadaCountyElkoArea[1] • Total53.73 sq mi (139.17 km2) • Land53.67 sq mi (138.99 km2) • Water0.07 sq...

 

Ada usul agar artikel ini digabungkan dengan Institut Pertanian Bogor. (Diskusikan) Rektor Institut Pertanian BogorPetahanaArif Satriasejak 15 Desember 2017Menjabat selama5 TahunPemegang pertamaArif Satria (akademisi)Dibentuk1963 Rektor Institut Pertanian Bogor atau Rektor IPB adalah organ IPB yang memimpin penyelenggaraan dan pengelolaan IPB .[1] Rektor diangkat/diberhentikan oleh Majelis Wali Amanat untuk masa jabatan 5 tahun, setelah melalui proses pemilihan yang diadakan khus...

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Gramedia Pustaka Utama – berita · surat kabar · buku · cendekiawan · JSTOR (Desember 2013) Artikel ini berisi konten yang ditulis dengan gaya sebuah iklan. Bantulah memperbaiki artikel ini dengan menghapus ko...

NuppeppōMakhluk misteriusNama lainNuppefuhōKelompokYōkaiAsalMitologiJepangNegaraJepangHabitatJalan atau kuil yang ditinggalkan orang, kuburanLaporan pertamaPaling awal tahun 1737 Nuppeppō (Jepang: ぬっぺっぽうcode: ja is deprecated ), atau nuppefuhō (Jepang: ぬっぺふほうcode: ja is deprecated ) adalah yōkai tanpa jenis kelamin dalam cerita rakyat yang diyakini memiliki tubuh yang lembek dan bau yang menyengat. Makhluk ini sudah muncul dalam sastra Jepang semenjak abad ke-18....

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Election for the Governor of Vermont 1795 Vermont gubernatorial election ← 1794 October 8, 1795 (1795-10-08) 1796 →   Nominee Thomas Chittenden Isaac Tichenor Party Independent Federalist Popular vote 4,260 2,038 Percentage 60.7% 29.1% Governor before election Thomas Chittenden Independent Elected Governor Thomas Chittenden Independent Elections in Vermont Federal government Presidential elections 1792 1796 1800 1804 1808 1812 1816 1820 1824 1828...

Fori imperialiI Fori Imperiali nel plastico di Italo Gismondi al Museo della civiltà romana.CiviltàRomana UtilizzoFori Epoca46 a.C.-113 d.C. LocalizzazioneStato Italia ComuneRoma DimensioniSuperficie120 000 m² Altezza14-16 m s.l.m. AmministrazionePatrimonioCentro storico di Roma EnteSovrintendenza capitolina ai beni culturali VisitabileSì Sito webwww.sovraintendenzaroma.it/i_luoghi/roma_antica/aree_archeologiche/fori_imperiali Mappa di localizzazione Modifica dati su Wikida...

 

Cry Prettysingolo discograficoScreenshot tratto dal video del branoArtistaCarrie Underwood Pubblicazione11 aprile 2018 Durata4:06 Album di provenienzaCry Pretty GenereCountry[1] EtichettaCapitol Nashville ProduttoreCarrie Underwood, David Garcia FormatiDownload digitale, streaming CertificazioniDischi di platino Stati Uniti[2](vendite: 1 000 000+) Carrie Underwood - cronologiaSingolo precedenteThe Champion(2018)Singolo successivoLove Wins(2018) Cry Pre...

 

МифологияРитуально-мифологическийкомплекс Система ценностей Сакральное Миф Мономиф Теория основного мифа Ритуал Обряд Праздник Жречество Мифологическое сознание Магическое мышление Низшая мифология Модель мира Цикличность Сотворение мира Мировое яйцо Мифическое �...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of cities in Mozambique – news · newspapers · books · scholar · JSTOR (December 2012) (Learn how and when to remove this message) Map of Mozambique's cities, towns and selected villages Maputo, Capital of Mozambique This is a list of cities and towns in M...

 

Public university in Boone, North Carolina, US Appalachian State UniversityFormer nameWatauga Academy (1899–1903)Appalachian Training School for Teachers (1903–1925)Appalachian State Normal School (1925–1929)Appalachian State Teachers College (1929–1967)MottoEsse quam videri (Latin)[1]Motto in EnglishTo Be, Rather Than To SeemTypePublic universityEstablished1899; 125 years ago (1899)Parent institutionUniversity of North CarolinaAcademic affiliationORAUEn...

Australian politician Percy BrookfieldPercy Brookfield in 1915Member of the New South Wales Legislative Assembly for SturtIn office3 February 1917 – 22 March 1921Serving with Mat Davidson and Brian DoePreceded byJohn CannSucceeded byJabez Wright Personal detailsBornPercival Stanley Brookfield(1875-08-07)7 August 1875Wavertree, Lancashire, EnglandDied22 March 1921(1921-03-22) (aged 45)Adelaide, South Australia, AustraliaResting placeBroken Hill CemeteryPolitical partyLa...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: GWR 34 Class – news · newspapers · books · scholar · JSTOR (December 2014) Locomotives Nos. 34 and 35 were a pair of Great Western Railway 0-6-0 steam locomotives built at Wolverhampton railway works under George Armstrong in 1866 as reconstructions ...

 

French cyclist Steve HouanardHouanard at the teams presentation for the 2011 Four Days of DunkirkPersonal informationBorn (1986-04-02) 2 April 1986 (age 38)Paris, FranceHeight1.83 m (6 ft 0 in)Weight73 kg (161 lb)Team informationDisciplineRoadRoleRiderAmateur team2008Chambéry Cyclisme Formation Professional teams2009–2010Skil–Shimano2011–2012Ag2r–La Mondiale Steve Houanard (born 2 April 1986) is a professional French road cyclist, who last rode for the A...

Martina PiazzaNazionalità Italia Calcio RuoloDifensore Squadra Venezia CarrieraGiovanili  Pordenone Squadre di club1 2010-2018 Pordenone106+ (4)+[1]2018-2022 San Marino85 (11)2022- Venezia20 (2) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito. Statistiche aggiornate al 23 maggio 2023 Modifica dati su Wikidata · Manuale Martina Piazza (20 marzo 1995) è u...

 

Stasiun MRT Boon Lay stasiun kereta api metroelevated station (en) Tempat Negara berdaulatSingapuraRegion di SingapuraWest RegionKota kecilJurong West (en) Pembagian administratif SingapuraJurong West Central (en) NegaraSingapura SejarahPembuatan1990 Lain-lainSitus webLaman resmi Sejarah Stasiun dibuka pada 6 Juli 1990. Upacara diadakan di stasiun ini untuk menandakan selesainya jaringan MRT. Stasiun ini dibangun untuk melayani penduduk di Kota Baru Jurong Barat dan pekerja di Tuas dan Pusat ...