Random measure

In probability theory, a random measure is a measure-valued random element.[1][2] Random measures are for example used in the theory of random processes, where they form many important point processes such as Poisson point processes and Cox processes.

Definition

Random measures can be defined as transition kernels or as random elements. Both definitions are equivalent. For the definitions, let be a separable complete metric space and let be its Borel -algebra. (The most common example of a separable complete metric space is .)

As a transition kernel

A random measure is a (a.s.) locally finite transition kernel from an abstract probability space to .[3]

Being a transition kernel means that

  • For any fixed , the mapping
is measurable from to
  • For every fixed , the mapping
is a measure on

Being locally finite means that the measures

satisfy for all bounded measurable sets and for all except some -null set

In the context of stochastic processes there is the related concept of a stochastic kernel, probability kernel, Markov kernel.

As a random element

Define

and the subset of locally finite measures by

For all bounded measurable , define the mappings

from to . Let be the -algebra induced by the mappings on and the -algebra induced by the mappings on . Note that .

A random measure is a random element from to that almost surely takes values in [3][4][5]

Intensity measure

For a random measure , the measure satisfying

for every positive measurable function is called the intensity measure of . The intensity measure exists for every random measure and is a s-finite measure.

Supporting measure

For a random measure , the measure satisfying

for all positive measurable functions is called the supporting measure of . The supporting measure exists for all random measures and can be chosen to be finite.

Laplace transform

For a random measure , the Laplace transform is defined as

for every positive measurable function .

Basic properties

Measurability of integrals

For a random measure , the integrals

and

for positive -measurable are measurable, so they are random variables.

Uniqueness

The distribution of a random measure is uniquely determined by the distributions of

for all continuous functions with compact support on . For a fixed semiring that generates in the sense that , the distribution of a random measure is also uniquely determined by the integral over all positive simple -measurable functions .[6]

Decomposition

A measure generally might be decomposed as:

Here is a diffuse measure without atoms, while is a purely atomic measure.

Random counting measure

A random measure of the form:

where is the Dirac measure and are random variables, is called a point process[1][2] or random counting measure. This random measure describes the set of N particles, whose locations are given by the (generally vector valued) random variables . The diffuse component is null for a counting measure.

In the formal notation of above a random counting measure is a map from a probability space to the measurable space (, ). Here is the space of all boundedly finite integer-valued measures (called counting measures).

The definitions of expectation measure, Laplace functional, moment measures and stationarity for random measures follow those of point processes. Random measures are useful in the description and analysis of Monte Carlo methods, such as Monte Carlo numerical quadrature and particle filters.[7]

See also

References

  1. ^ a b Kallenberg, O., Random Measures, 4th edition. Academic Press, New York, London; Akademie-Verlag, Berlin (1986). ISBN 0-12-394960-2 MR854102. An authoritative but rather difficult reference.
  2. ^ a b Jan Grandell, Point processes and random measures, Advances in Applied Probability 9 (1977) 502-526. MR0478331 JSTOR A nice and clear introduction.
  3. ^ a b Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 1. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.
  4. ^ Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 526. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6.
  5. ^ Daley, D. J.; Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes. Probability and its Applications. doi:10.1007/b97277. ISBN 0-387-95541-0.
  6. ^ Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 52. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.
  7. ^ "Crisan, D., Particle Filters: A Theoretical Perspective, in Sequential Monte Carlo in Practice, Doucet, A., de Freitas, N. and Gordon, N. (Eds), Springer, 2001, ISBN 0-387-95146-6

Read other articles:

Grand Prix Sepeda Motor F.I.M. musim 2012 Sebelum: 2011 Sesudah: 2013 MotoGP musim 2012Moto3 musim 2012 Marc Márquez menjadi juara dunia Moto2. Kejuaraan Dunia FIM Moto2 2012 adalah bagian dari musim Kejuaraan Dunia F.I.M. Road Racing ke-64. Stefan Bradl adalah juara bertahan, tetapi tidak bertanding di musim ini karena dia bergabung dengan MotoGP bersama LCR Honda.[1] Ringkasan Musim Marc Márquez memenangkan gelar kejuaraan Moto2 setelah pertempuran sepanjang musim dengan sesama p...

 

Fanny Hensel, 1842, karya Moritz Daniel OppenheimFanny Mendelssohn (14 November 1805 – 14 Mei 1847),[1] kemudian Fanny [Cäcilie] Mendelssohn Bartholdy dan, usai menikah, Fanny Hensel, adalah seorang komponis dan pianis asal Jerman. Ia mengkomposisikan lebih dari 460 karya musik. Komposisinya meliputi sebuah trio piano dan beberapa buku dan karya piano solo. Catatan ^ Fanny Mendelssohn. Encyclopaedia Britannica. Diarsipkan dari versi asli tanggal 2023-04-12. Diakses ta...

 

Casalnoceto commune di Italia Tempat categoria:Articles mancats de coordenades Negara berdaulatItaliaRegion di ItaliaPiedmontProvinsi di ItaliaProvinsi Alessandria NegaraItalia Ibu kotaCasalnoceto PendudukTotal976  (2023 )GeografiLuas wilayah12,98 km² [convert: unit tak dikenal]Ketinggian159 m Berbatasan denganCastellar Guidobono Godiasco Pontecurone Rivanazzano Terme (en) Viguzzolo Volpedo Volpeglino SejarahHari liburpatronal festival (en) Santo pelindungMaria Diangkat ke Surga In...

Lambang Provinsi Sulawesi Utara Peta Lokasi Provinsi Sulawesi Utara di Indonesia Peta Lokasi Kabupaten dan kota di Provinsi Sulawesi Utara Provinsi Sulawesi Utara mempunyai 11 kabupaten dan 4 kota dengan ibukota di Kota Manado. Berikut daftar kabupaten dan/atau kota di Sulawesi Utara No. Kabupaten/kota Ibu kota Bupati/wali kota Luas wilayah (km2)[1] Jumlah penduduk (2020)[1] Kecamatan Kelurahan/desa Lambang Peta lokasi 1 Kabupaten Bolaang Mongondow Lolak Limi Mokodompit (Pj.)...

 

  لمعانٍ أخرى، طالع رافينا (توضيح). رافينا   الإحداثيات 42°28′35″N 73°48′51″W / 42.476388888889°N 73.814166666667°W / 42.476388888889; -73.814166666667   [1] تاريخ التأسيس 1914  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة ألباني  خصائص جغرافية  المساحة 3...

 

العلاقات البنينية المدغشقرية بنين مدغشقر   بنين   مدغشقر تعديل مصدري - تعديل   العلاقات البنينية المدغشقرية هي العلاقات الثنائية التي تجمع بين بنين ومدغشقر.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة بنين م...

Songs in the Key of LifeAlbum studio karya Stevie WonderDirilis28 September 1976Direkam1975-1976; Crystal Sound Studios, HollywoodGenreR&BDurasi105:04LabelMotownProduserStevie WonderKronologi Stevie Wonder Fulfillingness' First Finale(1974)Fulfillingness' First Finale1974 Songs in the Key of Life (1976) Journey through the Secret Life of Plants(1979)Journey through the Secret Life of Plants1979 Songs in the Key of Life adalah album oleh Stevie Wonder, diterbitkan pada 28 September 197...

 

Sports season2017 Big Ten Conference men's soccer seasonLeagueNCAA Division ISportSoccerDurationAugust 25, 2017 – November 5, 2017Number of teams92018 MLS SuperDraftTop draft pickFrancis Atuahene, MichiganPicked byFC Dallas, 4th overallRegular SeasonSeason championsMichigan  Runners-upIndianaSeason MVPFW: Chris Mueller, WisconsinMF: Eryk Williamson, MarylandDF: Grant Lillard, IndianaGK: Jimmy Hague, Michigan StateTop scorerTom Barlow (10)[1]TournamentChampionsWisconsin...

 

Megarhyssa macrurus (Ichneumonidae), sebuah parasitoid, memasukkan ovipositornya ke inangnya melalui kayu. Tubuh betina kira-kira sepanjang 2 inci (50 mm), dengan ovipositor yang panjangnya kira-kira 4 inci (100 mm) Betina tawon parasitoid Neoneurus vesculus (Braconidae) memasukkan ovipositornya kedalam semut Formica cunicularia pekerja. Tawon parasitoid adalah kelompok besar superfamili-superfamili Hymenoptera, dengan semua kecuali tawon kayu (Orussoidea) termasuk dalam Apocrita ya...

Indian Centre for Space PhysicsLogo of ICSPTypeResearch Institution, AutonomousEstablished1999AffiliationUniversity of Calcutta Sister OrganizationPresidentSubrata MidyaDirectorSandip ChakrabartiLocationKolkata, West Bengal, IndiaCampusUrbanWebsitewww.csp.res.in The Indian Centre for Space Physics (ICSP) is an Indian non-profit research organisation dedicated to carrying out advanced research in astronomy, astrophysics and space science. It is a sister institute of the University of Calcutta...

 

1st Baroness Greenwich Arms of the Baroness Greenwich Caroline Townshend, 1st Baroness Greenwich (née Campbell, 17 November 1717 – 11 January 1794) was a British peeress, the daughter and eldest child[1] of John Campbell, 2nd Duke of Argyll, and his wife, the former Jane Warburton.[2][3] She was a sister of the diarist Lady Mary Coke. On 2 October 1742, she married Francis Scott, Earl of Dalkeith (a son of the 2nd Duke of Buccleuch), and took the courtesy title of C...

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

U.S information technology firm Mandiant, Inc.FormerlyRed Cliff Consulting (2004–2006)Company typeSubsidiaryIndustryInformation securityFounded2004; 20 years ago (2004)FounderKevin MandiaHeadquartersReston, Virginia, U.S.Key peopleKevin Mandia, CEORevenue US$483 million (2021)Number of employees2,335 (December 2021)Parent FireEye (2013–2021) Google (2022–) Websitemandiant.comFootnotes / references[1] Mandiant is an American cybersecurity firm and a sub...

 

Giyuugun (義勇軍code: ja is deprecated , Giyūgun) (tentara sukarela) berasal dari kata 義勇 giyū (sukarela) dan 軍 gun (tentara). Tidak seperti Heiho yang mengikuti aturan tentara Jepang, Giyuugun memiliki Undang-undangnya sendiri.[1] PETA juga termasuk Giyuugun tetapi hanya merujuk pada Giyuugun yang dibentuk di Pulau Jawa. Perbedaan lainnya bahwa pangkat tertinggi Giyuugun Sumatra adalah Letnan I (中尉code: ja is deprecated , Chu-i), sedangkan di PETA adalah Kapten (大尉...

 

جوديث كلينمان معلومات شخصية الميلاد 17 أبريل 1941 (العمر 83 سنة)فيلادلفيا  الإقامة كاليفورنيا، الولايات المتحدة الجنسية أمريكية عضوة في الأكاديمية الوطنية للعلوم[1]،  والأكاديمية الأمريكية للفنون والعلوم،  والجمعية الأمريكية للفلسفة  الحياة العملية المؤسسات �...

مدرسة ثانوية عمر الخيام دبیرستان عمر خیام مدرسة ثانوية عمر الخيام معلومات الموقع الجغرافي المدينة نيسابور البلد  إيران تعديل مصدري - تعديل   مدرسة عمر الخيام الثانوية من المدارس العريقة نيسابور ومن أقدم المدارس الإيرانية، مسجلة في منظمة التراث الثقافي في إيران. كان �...

 

阿讷西Annecy 法國城市上:阿讷西湖及遠方的圖尼特峰;左下:阿讷西城堡;右下:傍晚的岛宫 旗幟圖章阿讷西的位置 阿讷西显示法国的地图阿讷西显示上萨瓦省的地图坐标:45°54′58″N 6°07′59″E / 45.91611°N 6.13306°E / 45.91611; 6.13306国家 法國大区 奥弗涅-罗讷-阿尔卑斯大区省 上萨瓦省(省会)区阿讷西区(区府)EPCI大阿讷西城市圈公共社�...

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Cala Tirant» – noticias · libros · académico · imágenesEste aviso fue puesto el 28 de abril de 2018. Cala Tirant Cala Tirant UbicaciónPaís  EspañaCoordenadas 40°02′39″N 4°06′20″E / 40.044175, 4.10566944CaracterísticasUrbanización NoCaracterísticas específicasTipo de playa Playa semivirgenAspectos medioambientalesZona pr...

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (mai 2015). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? Comme...

 

English antiquarian Anthony WoodPortrait of Wood by Michael BurghersBorn(1632-12-17)17 December 1632Oxford, EnglandDied28 November 1695(1695-11-28) (aged 62)Oxford, EnglandResting placeMerton College, OxfordNationalityEnglishOther namesAnthony à WoodEducationNew College School, Oxford; Lord Williams's School, Thame; Merton College, OxfordOccupationAntiquaryEmployerUniversity of OxfordAwardsMA (Oxford, 1655) Anthony Wood (17 December 1632 – 28 November 1695), who styled himself An...