Content (measure theory)

In mathematics, in particular in measure theory, a content is a real-valued function defined on a collection of subsets such that

That is, a content is a generalization of a measure: while the latter must be countably additive, the former must only be finitely additive.

In many important applications the is chosen to be a ring of sets or to be at least a semiring of sets in which case some additional properties can be deduced which are described below. For this reason some authors prefer to define contents only for the case of semirings or even rings.

If a content is additionally σ-additive it is called a pre-measure and if furthermore is a σ-algebra, the content is called a measure. Therefore, every (real-valued) measure is a content, but not vice versa. Contents give a good notion of integrating bounded functions on a space but can behave badly when integrating unbounded functions, while measures give a good notion of integrating unbounded functions.

Examples

A classical example is to define a content on all half open intervals by setting their content to the length of the intervals, that is, One can further show that this content is actually σ-additive and thus defines a pre-measure on the semiring of all half-open intervals. This can be used to construct the Lebesgue measure for the real number line using Carathéodory's extension theorem. For further details on the general construction see article on Lebesgue measure.

An example of a content that is not a measure on a σ-algebra is the content on all subsets of the positive integers that has value on any integer and is infinite on any infinite subset.

An example of a content on the positive integers that is always finite but is not a measure can be given as follows. Take a positive linear functional on the bounded sequences that is 0 if the sequence has only a finite number of nonzero elements and takes value 1 on the sequence so the functional in some sense gives an "average value" of any bounded sequence. (Such a functional cannot be constructed explicitly, but exists by the Hahn–Banach theorem.) Then the content of a set of positive integers is the average value of the sequence that is 1 on this set and 0 elsewhere. Informally, one can think of the content of a subset of integers as the "chance" that a randomly chosen integer lies in this subset (though this is not compatible with the usual definitions of chance in probability theory, which assume countable additivity).

Properties

Frequently contents are defined on collections of sets that satisfy further constraints. In this case additional properties can be deduced that fail to hold in general for contents defined on any collections of sets.

On semi ring

If forms a Semi ring of sets then the following statements can be deduced:

  • Every content is monotone that is,
  • Every content is sub additive that is,
for such that

On rings

If furthermore is a Ring of sets one gets additionally:

  • Subtractive: for satisfying it follows
  • Sub additive:
  • -Superadditivity: For any we pairwise disjoint satisfying we have
  • If is a finite content, that is, then the inclusion–exclusion principle applies: where for all

Integration of bounded functions

In general integration of functions with respect to a content does not behave well. However, there is a well-behaved notion of integration provided that the function is bounded and the total content of the space is finite, given as follows.

Suppose that the total content of a space is finite. If is a bounded function on the space such that the inverse image of any open subset of the reals has a content, then we can define the integral of with respect to the content as where the form a finite collections of disjoint half-open sets whose union covers the range of and is any element of and where the limit is taken as the diameters of the sets tend to 0.

Duals of spaces of bounded functions

Suppose that is a measure on some space The bounded measurable functions on form a Banach space with respect to the supremum norm. The positive elements of the dual of this space correspond to bounded contents with the value of on given by the integral Similarly one can form the space of essentially bounded functions, with the norm given by the essential supremum, and the positive elements of the dual of this space are given by bounded contents that vanish on sets of measure 0.

Construction of a measure from a content

There are several ways to construct a measure μ from a content on a topological space. This section gives one such method for locally compact Hausdorff spaces such that the content is defined on all compact subsets. In general the measure is not an extension of the content, as the content may fail to be countably additive, and the measure may even be identically zero even if the content is not.

First restrict the content to compact sets. This gives a function of compact sets with the following properties:

  1. for all compact sets
  2. for all pairs of compact sets
  3. for all pairs of disjoint compact sets.

There are also examples of functions as above not constructed from contents. An example is given by the construction of Haer measure on a locally compact group. One method of constructing such a Hear measure is to produce a left-invariant function as above on the compact subsets of the group, which can then be extended to a left-invariant measure.

Definition on open sets

Given λ as above, we define a function μ on all open sets by This has the following properties:

  1. for any collection of open sets
  2. for any collection of disjoint open sets.

Definition on all sets

Given μ as above, we extend the function μ to all subsets of the topological space by This is an outer measure, in other words it has the following properties:

  1. for any countable collection of sets.

Construction of a measure

The function μ above is an outer measure on the family of all subsets. Therefore, it becomes a measure when restricted to the measurable subsets for the outer measure, which are the subsets such that for all subsets If the space is locally compact then every open set is measurable for this measure.

The measure does not necessarily coincide with the content on compact sets, However it does if is regular in the sense that for any compact is the inf of for compact sets containing in their interiors.

See also

References

  • Elstrodt, Jürgen (2018), Maß- und Integrationstheorie, Springer-Verlag
  • Halmos, Paul (1950), Measure Theory, Van Nostrand and Co.
  • Mayrhofer, Karl (1952), Inhalt und Mass (Content and measure), Springer-Verlag, MR 0053185

Read other articles:

Logam yang dipanaskan akan membuat atom-atom pada logam bergetar semakin cepat. Akibatnya atom-atom tersebut menghasilkan gelombang elektromagnetik (cahaya) Proses pemanasan berkelanjutan dapat ditemukan pada matahari dan bumi. Beberapa radiasi termal matahari menyerang dan memanaskan bumi. Dibandingkan dengan matahari, bumi memiliki suhu yang jauh lebih rendah sehingga mengirimkan radiasi termal yang jauh lebih sedikit ke matahari. Panas dari proses ini dapat diukur dengan jumlah bersih, dan...

 

SCTV Awards 2013DeskripsiPrestasi dalam acara televisiTanggal29 November 2013LokasiJIEXPO Hall D2, Kemayoran, JakartaNegaraIndonesiaPembawa acara Andhika Pratama Gading Marten Narji Cagur Bianca Liza IkhtisarSinetron Paling NgetopEmak Ijah Pengen Ke MekahAktor Utama Paling NgetopEza GioninoAktris Utama Paling NgetopDinda KiranaAktor Pendamping Paling NgetopChrist LaurentAktris Pendamping Paling NgetopEriska ReinSiaran televisi/radioSaluranSCTV← 2012 SCTV Awards2014 → SCTV Awards 2...

 

Licensed built variant of the F-104 Starfighter CF-104 Starfighter An RCAF CF-104 in flight Role Interceptor aircraft, Fighter-bomberType of aircraft Manufacturer Canadair Design group Lockheed Corporation First flight 26 May 1961 Introduction March 1962 Retired 1995 Turkish Air Force[1] Primary users Royal Canadian Air ForceRoyal Danish Air Force Royal Norwegian Air Force Turkish Air Force Number built 200 Developed from Lockheed F-104 Starfighter The Canadair CF-104 Starfighter...

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...

 

Our HousePoster serial televisi Our HouseGenreDramaDitulis olehShinji NojimaSutradara Kozo Nagayama Kensaku Sawada Hiromasa Kato Pemeran Mana Ashida Charlotte Kate Fox Koji Yamamoto Seishiro Kato Kokoro Terada Serika Matsuda Mai Watanabe Lagu pembuka愛を止めないで(Ai o tome nai de)[1][2]Penata musikOff CourseNegara asal JepangBahasa asliJepangProduksiLokasi produksiJepangDurasi60 menitRilis asliJaringanFuji TVRilis17 April (2016-04-17) –12 Juni 2...

 

Sebuah Payang di Museum Negara, Malaysia. Perahu payang atau hanya payang adalah perahu nelayan tradisional Melayu yang terbuka. Perahu jenis ini biasanya ditemukan di Terengganu, dan pada jumlah lebih sedikit, Kelantan, Pahang, dan pantai Johor. Beberapa perahu payang biasanya datang ke Singapura untuk beroperasi selama periode monsun timur laut di Laut Tiongkok Selatan.[1] Etimologi Nama perahu payang berasal dari payang (sejenis pukat) yang digunakan oleh nelayan setempat. Namanya ...

Cet article est une ébauche concernant une entreprise chinoise et Hong Kong. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Une page sur une entreprise étant sujette à controverse, n’oubliez pas d’indiquer dans l’article les critères qui le rendent admissible. Pour les articles homonymes, voir Watson. Groupe A.S. Watson Création 1828 Slogan « We Bring More to Life »(« Nous apportons plus à la vie ») Siège social Sha Tin H...

 

Concentration of population defined by the United States Census Bureau This article is part of a series onPolitical divisions ofthe United States First level State (Commonwealth) Federal district Territory (Commonwealth) Indian reservation (list) / Hawaiian home land / Alaska Native tribal entity / Pueblo / Off-reservation trust land / Tribal Jurisdictional Area Second level County / Parish / Borough Unorganized Borough / Census area / Villages / District (USVI) / District (AS) Consolidated c...

 

Artikel ini sedang dalam perubahan besar untuk sementara waktu.Untuk menghindari konflik penyuntingan, dimohon jangan melakukan penyuntingan selama pesan ini ditampilkan.Halaman ini terakhir disunting oleh Badak Jawa (Kontrib • Log) 213 hari 1379 menit lalu. Pesan ini dapat dihapus jika halaman ini sudah tidak disunting dalam beberapa jam. Jika Anda adalah penyunting yang menambahkan templat ini, harap diingat untuk menghapusnya setelah selesai atau menggantikannya dengan {{Under ...

BlignycomuneBligny – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementReims CantoneDormans-Paysages de Champagne TerritorioCoordinate49°11′40.74″N 3°51′40.18″E / 49.19465°N 3.86116°E49.19465; 3.86116 (Bligny)Coordinate: 49°11′40.74″N 3°51′40.18″E / 49.19465°N 3.86116°E49.19465; 3.86116 (Bligny) Altitudine108-225 m s.l.m. Superficie2,62 km² Abitanti119[1] (2013) D...

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2019) الحدثكأس الكؤوس الأوروبية 1961–62 أتلتيكو مدريد نادي فيورنتينا 3 0 التاريخ5 سبتمبر 1962  الملعبإم إتش بي أري�...

 

Article principal : Cyclisme sur piste aux Jeux olympiques d'été de 2024. Cet article traite de l'épreuve féminine. Pour la compétition masculine, voir Omnium masculin aux Jeux olympiques d'été de 2024. Omnium féminin aux Jeux olympiques d'été de 2024 Généralités Sport Cyclisme sur piste Organisateur(s) CIO / UCI Édition 4e Lieu(x) St-Quentin-en-Yvelines Date 11 août 2024 Participants 22 Site(s) Vélodrome national[1] Palmarès Tenant du titre  Jennifer Valente (...

 

亞歷山大大帝所持的緒斯同騎槍 緒斯同(希臘語 ξυστόν),是古代希臘騎兵所用來戳擊的騎槍。長約3.5~4.25公尺,可能因為過長的原因需要兩手持用,從龐貝城所發掘出來的亞歷山大馬賽克鑲嵌畫顯示,緒斯同騎槍也可以用一手持用。緒斯同騎槍槍身由山茱萸木製成[1],槍末頭也有一矛頭,可用來保持平衡,或是當騎槍折斷後可用來另一頭繼續戰鬥。这种武器的名�...

ゼッドZedd 2014年基本情報出生名 Антон Заславский生誕 (1989-09-02) 1989年9月2日(35歳) ロシア・ソビエト連邦社会主義共和国 サラトフ出身地 ドイツ カイザースラウテルンジャンル ポップ、ダンス・ポップ、EDM、ハウス、エレクトロ・ハウス、コンプレクストロ、プログレッシブ・ハウス職業 DJ音楽プロデューサーソングライター担当楽器 シンセサイザー、ドラム�...

 

Not to be confused with Buddhism in Greece.Cultural syncretism in Central and South Asia in antiquity Gautama Buddha in Greco-Buddhist style, 1st–2nd century AD, Gandhara (Peshawar basin, modern day Pakistan). Part of a series onBuddhism Glossary Index Outline History Timeline The Buddha Pre-sectarian Buddhism Councils Silk Road transmission of Buddhism Decline in the Indian subcontinent Later Buddhists Buddhist modernism DharmaConcepts Four Noble Truths Noble Eightfold Path Dharma wheel Fi...

 

Rapid-fire projectile weapon that fires armour-piercing or explosive shells This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Autocannon – news · newspapers · books · scholar · JSTOR (June 2009) (Learn how and when to remove this message) US M242 Bushmaster 25 mm autocannon mounted on an M2 Bradley armour...

Album by Sonic Youth Confusion Is SexStudio album by Sonic YouthReleased1983Recorded1982–1983Genre Noise rock no wave avant-punk lo-fi Length35:40LabelNeutralProducer Sonic Youth Wharton Tiers John Erskine Sonic Youth chronology Sonic Youth(1982) Confusion Is Sex(1983) Kill Yr Idols(1983) Sonic Youth studio album chronology Confusion Is Sex(1983) Bad Moon Rising(1985) Professional ratingsReview scoresSourceRatingAllMusic[1]Blender[2]Chicago Tribune[3]Christgau's ...

 

2003 video and EP by PrimusAnimals Should Not Try to Act Like PeopleVideo and EP by PrimusReleasedOctober 7, 2003RecordedJune 2003StudioRancho Relaxo, Sebastopol, CaliforniaGenreSpace rock, progressive rock[1]Length28:18 (CD)LabelInterscope, Prawn SongProducerLes Claypool, Primus (CD)Reuben Raffael, Zoltron (DVD)Primus video chronology Videoplasty(1998) Animals Should Not Try to Act Like People(2003) Hallucino-Genetics(2004) Primus audio chronology Antipop(1999) Animal...