Share to: share facebook share twitter share wa share telegram print page

Saros (astronomy)

The saros (/ˈsɛərɒs/ ) is a period of exactly 223 synodic months, approximately 6585.321 days (18.04 years), or 18 years plus 10, 11, or 12 days (depending on the number of leap years), and 8 hours, that can be used to predict eclipses of the Sun and Moon. One saros period after an eclipse, the Sun, Earth, and Moon return to approximately the same relative geometry, a near straight line, and a nearly identical eclipse will occur, in what is referred to as an eclipse cycle. A sar is one half of a saros.[1]

A series of eclipses that are separated by one saros is called a saros series. It corresponds to:

The 19 eclipse years means that if there is a solar eclipse (or lunar eclipse), then after one saros a new moon will take place at the same node of the orbit of the Moon, and under these circumstances another eclipse can occur.

History

The earliest discovered historical record of what is known as the saros is by Chaldean (neo-Babylonian) astronomers in the last several centuries BCE.[2][3][4] It was later known to Hipparchus, Pliny[5] and Ptolemy.[6]

The name "saros" (Greek: σάρος) was applied to the eclipse cycle by Edmond Halley in 1686,[7] who took it from the Suda, a Byzantine lexicon of the 11th century. The Suda says, "[The saros is] a measure and a number among Chaldeans. For 120 saroi make 2220 years (years of 12 lunar months) according to the Chaldeans' reckoning, if indeed the saros makes 222 lunar months, which are 18 years and 6 months (i.e. years of 12 lunar months)."[8] The information in the Suda in turn was derived directly or otherwise from the Chronicle of Eusebius of Caesarea,[citation needed] which quoted Berossus. (Guillaume Le Gentil claimed that Halley's usage was incorrect in 1756,[9] but the name continues to be used.) The Greek word apparently either comes from the Babylonian word sāru meaning the number 3600[10] or the Greek verb saro (σαρῶ) that means "sweep (the sky with the series of eclipses)".[11]

Antikythera Mechanism Saros cycle for the prediction of eclipses ΣΚΓ′, in the red rectangle, and means 223 months. Written between 150 and 100 BCE

The Saros period of 223 lunar months (in Greek numerals, ΣΚΓ′) is in the Antikythera Mechanism user manual on this instrument, made around 150 to 100 BCE in Greece, as seen in the picture. This number is one of a few inscriptions of the mechanism that are visible with the unaided eye.[12][13] Above it, the period of the Metonic cycle and the Callippic cycle are also visible.

Description

Lunar eclipses occurring near the Moon's descending node are given odd saros series numbers. The first eclipse in such series passes through the southern edge of the Earth's shadow, and the Moon's path is shifted northward each successive saros, while lunar eclipses occurring near the Moon's ascending node are given even saros series numbers. The first eclipse in such series passes through the northern edge of the Earth's shadow, and the Moon's path is shifted southward each successive saros.

The saros, a period of 6585.3211 days (15 common years + 3 leap years + 12.321 days, 14 common years + 4 leap years + 11.321 days, or 13 common years + 5 leap years + 10.321 days), is useful for predicting the times at which nearly identical eclipses will occur. Three periodicities related to lunar orbit, the synodic month, the draconic month, and the anomalistic month coincide almost perfectly each saros cycle. For an eclipse to occur, either the Moon must be located between the Earth and Sun (for a solar eclipse) or the Earth must be located between the Sun and Moon (for a lunar eclipse). This can happen only when the Moon is new or full, respectively, and repeat occurrences of these lunar phases result from solar and lunar orbits producing the Moon's synodic period of 29.53059 days. During most full and new moons, however, the shadow of the Earth or Moon falls to the north or south of the other body. Eclipses occur when the three bodies form a nearly straight line. Because the plane of the lunar orbit is inclined to that of the Earth, this condition occurs only when a full or new Moon is near or in the ecliptic plane, that is when the Moon is at one of the two nodes (the ascending or descending node). The period of time for two successive lunar passes through the ecliptic plane (returning to the same node) is termed the draconic month, a 27.21222 day period. The three-dimensional geometry of an eclipse, when the new or full moon is near one of the nodes, occurs every five or six months when the Sun is in conjunction or opposition to the Moon and coincidentally also near a node of the Moon's orbit at that time, or twice per eclipse year. Two eclipses separated by one saros have very similar appearance and duration due to the distance between the Earth and Moon being nearly the same for each event: this is because the saros is also an integer multiple of the anomalistic month of 27.5545 days, the period of the moon with respect to the lines of apsides in its orbit.

Visualization of a period of one saros cycle in 3D.

After one saros, the Moon will have completed roughly an integer number of synodic, draconic, and anomalistic periods (223, 242, and 239) and the Earth-Sun-Moon geometry will be nearly identical: the Moon will have the same phase and be at the same node and the same distance from the Earth. In addition, because the saros is close to 18 years in length (about 11 days longer), the Earth will be nearly the same distance from the Sun, and tilted to it in nearly the same orientation (same season).[14] Given the date of an eclipse, one saros later a nearly identical eclipse can be predicted. During this 18-year period, about 40 other solar and lunar eclipses take place, but with a somewhat different geometry. One saros equaling 18.03 years is not equal to a perfect integer number of lunar orbits (Earth revolutions with respect to the fixed stars of 27.32166 days sidereal month), therefore, even though the relative geometry of the Earth–Sun–Moon system will be nearly identical after a saros, the Moon will be in a slightly different position with respect to the stars for each eclipse in a saros series. The axis of rotation of the Earth–Moon system exhibits a precession period of 18.59992 years.

The saros is not an integer number of days, but contains the fraction of +13 of a day. Thus each successive eclipse in a saros series occurs about eight hours later in the day. In the case of an eclipse of the Sun, this means that the region of visibility will shift westward about 120°, or about one third of the way around the globe, and the two eclipses will thus not be visible from the same place on Earth. In the case of an eclipse of the Moon, the next eclipse might still be visible from the same location as long as the Moon is above the horizon. Given three saros eclipse intervals, the local time of day of an eclipse will be nearly the same. This three saros interval (19,755.96 days) is known as a triple saros or exeligmos (Greek: "turn of the wheel") cycle.

Saros series

Solar eclipses occurring near the Moon's descending node are given even saros series numbers. The first eclipse of each series starts at the southern limb of the Earth and the eclipse's path is shifted northward with each successive saros, while solar eclipses occurring near the Moon's ascending node are given odd saros series numbers. The first eclipse of each series starts at the northern limb of the Earth and the eclipse's path is shifted southward with each successive saros.

Each saros series starts with a partial eclipse (Sun first enters the end of the node), and each successive saros the path of the Moon is shifted either northward (when near the descending node) or southward (when near the ascending node) due to the fact that the saros is not an exact integer of draconic months (about one hour short). At some point, eclipses are no longer possible and the series terminates (Sun leaves the beginning of the node). An arbitrary solar saros series was designated as solar saros series 1 by compilers of eclipse statistics. This series has finished, but the eclipse of November 16, 1990 BC (Julian calendar) for example is in solar saros series 1. There are different saros series for solar and lunar eclipses. For lunar saros series, the lunar eclipse occurring 58.5 synodic months earlier (February 23, 1994 BC) was assigned the number 1. If there is an eclipse one inex (29 years minus about 20 days) after an eclipse of a particular saros series then it is a member of the next series. For example, the eclipse of October 26, 1961 BC is in solar saros series 2. Saros series, of course, went on before these dates, and it is necessary to extend the saros series numbers backwards to negative numbers even just to accommodate eclipses occurring in the years following 2000 BC (up till the last eclipse with a negative saros number in 1367 BC). For solar eclipses the statistics for the complete saros series within the era between 2000 BC and AD 3000 are given in this article's references.[15][16] It takes between 1226 and 1550 years for the members of a saros series to traverse the Earth's surface from north to south (or vice versa). These extremes allow from 69 to 87 eclipses in each series (most series have 71 or 72 eclipses). From 39 to 59 (mostly about 43) eclipses in a given series will be central (that is, total, annular, or hybrid annular-total). At any given time, approximately 40 different saros series will be in progress.

Saros series, as mentioned, are numbered according to the type of eclipse (lunar or solar).[17][18] In odd numbered series (for solar eclipses) the Sun is near the ascending node, whereas in even numbered series it is near the descending node (this is reversed for lunar eclipse saros series). Generally, the ordering of these series determines the time at which each series peaks, which corresponds to when an eclipse is closest to one of the lunar nodes. For solar eclipses, the 40 series numbered between 117 and 156 are active (series 117 will end in 2054), whereas for lunar eclipses, there are now 41 active saros series (these numbers can be derived by counting the number of eclipses listed over an 18-year (saros) period from the eclipse catalog sites).[19][20]

Example

Saros 131 lunar eclipse dates
May 10, 1427
(Julian calendar)
First penumbral
(southern edge of shadow)
...6 intervening penumbral eclipses omitted...
July 25, 1553
(Julian calendar)
First partial
...19 intervening partial eclipses omitted...
March 22, 1932
Final partial
12:32 UT
April 2, 1950
First total
20:44 UT
April 13, 1968 04:47 UT
April 24, 1986 12:43 UT
May 4, 2004 20:30 UT
May 16, 2022
First central
04:11 UT
May 26, 2040 11:45 UT
June 6, 2058 19:14 UT
June 17, 2076
Central
02:37 UT
...6 intervening total eclipses omitted...
September 3, 2202
Last total
05:59 UT
September 13, 2220
First partial
...18 intervening partial eclipses omitted...
April 9, 2563 Last partial umbral
...7 intervening penumbral eclipses omitted...
July 7, 2707 Last penumbral
(northern edge of shadow)

As an example of a single saros series, this table gives the dates of some of the 72 lunar eclipses for saros series 131. This eclipse series began in AD 1427 with a partial eclipse at the southern edge of the Earth's shadow when the Moon was close to its descending node. In each successive saros, the Moon's orbital path is shifted northward with respect to the Earth's shadow, with the first total eclipse occurring in 1950. For the following 252 years, total eclipses occur, with the central eclipse in 2078. The first partial eclipse after this will occur in the year 2220, and the final partial eclipse of the series will occur in 2707. The total lifetime of lunar saros series 131 is 1280 years. Solar saros 138 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

Because of the +13 fraction of days in a saros, the visibility of each eclipse will differ for an observer at a given locale. For the lunar saros series 131, the first total eclipse of 1950 had its best visibility for viewers in Eastern Europe and the Middle East because mid-eclipse was at 20:44 UT. The following eclipse in the series occurred about 8 hours later in the day with mid-eclipse at 4:47 UT, and was best seen from North America and South America. The third total eclipse occurred about 8 hours later in the day than the second eclipse with mid-eclipse at 12:43 UT, and had its best visibility for viewers in the Western Pacific, East Asia, Australia and New Zealand. This cycle of visibility repeats from the start to the end of the series, with minor variations. Solar saros 138 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

For a similar example for solar saros see solar saros 136.

Relationship between lunar and solar saros (sar)

After a given lunar or solar eclipse, after 9 years and 5+12 days (a half saros, or sar) an eclipse will occur that is lunar instead of solar, or vice versa, with similar properties.[21]

For example, if the Moon's penumbra partially covers the southern limb of the Earth during a solar eclipse, 9 years and 5+12 days later a lunar eclipse will occur in which the Moon is partially covered by the southern limb of the Earth's penumbra. Likewise, 9 years and 5+12 days after a total solar eclipse or an annular solar eclipse occurs, a total lunar eclipse will also occur. This 9-year period is referred to as a sar. It includes 111+12 synodic months, or 111 synodic months plus one fortnight. The fortnight accounts for the alternation between solar and lunar eclipse. For a visual example see this chart (each row is one sar apart).

See also

References

  1. ^ van Gent, Robert Harry (8 September 2003). "A Catalogue of Eclipse Cycles".
  2. ^ Tablets 1414, 1415, 1416, 1417, 1419 of: T. G. Pinches, J. N. Strassmaier: Late Babylonian Astronomical and Related Texts. A. J. Sachs (ed.), Brown University Press 1955
  3. ^ A. J. Sachs & H. Hunger (1987–1996): Astronomical Diaries and Related Texts from Babylonia, Vol.I–III. Österreichischen Akademie der Wissenschaften. ibid. H. Hunger (2001) Vol. V: Lunar and Planetary Texts
  4. ^ P. J. Huber & S. de Meis (2004): Babylonian Eclipse Observations from 750 BC to 1 BC, par. 1.1. IsIAO/Mimesis, Milano
  5. ^ Naturalis Historia II.10[56]
  6. ^ Almagest IV.2
  7. ^ Halley, E. (1686). "Emendationes & Notae in tria loca vitiose edita in textu vulgato Naturalis Historiae C. Plinii" [Corrections and notes on three badly edited passages in a common edition of C. Pliny's Natural History]. Philosophical Transactions of the Royal Society of London (in Latin). 17 (194): 535–540. doi:10.1098/rstl.1686.0101. S2CID 186208699. From p. 537: "Secundo loco annotare libet hanc Periodum Chaldaeis olim Astronomiae repertoribus Saron dici, … " (In the second passage, it is pleasing to note [that] this period was called "Saron" by Chaldean authors of astronomy, … ) " … Sari mensura & numerus apud Chaldaeos, etenim 120 Sari constituunt annos 2222 juxta Chaldaeorum calculum, nempe Saros constat ex 222 mensibus Lunaribus, qui sunt 18 Anni cum sex mensibus." ( … the Sari [was] a measure and number in the writings of the Chaldeans, as a matter of fact 120 Sari constitute 2,222 years according to the Chaldeans' calculation; indeed a Saros consists of 222 lunar months, which are 18 years and 6 months.)
  8. ^ The Suda entry is online here.
  9. ^ Le Gentil's criticism of Halley's use of the term "Saros" appeared in two places in the 1756 volume of Histoire de l'Académie Royale des Sciences, avec les mémoires de mathématique et de physique:
    • in the Histoire section: (Staff) (1756). "Sur le Saros Chaldaïque" [On the Chaldean Saros]. Histoire de l'Académie Royale des Sciences, avec les mémoires de mathématique et de physique (in French): 80–90. From p. 81: "M. le Gentil convient avec M. Halley de l'utilité de cette période, mais il ne convient pas de même de son exactitude, ni que ce soit effectivement celle que les Chaldéens connoissoient sous le nom de Saros." (Mr. le Gentil agrees with Mr. Halley about the usefulness of this period [i.e., 223 years], but he doesn't agree about its accuracy, nor that it is really what the Chaldeans knew by the name of "Saros".)
    • in the Mémoires section: le Gentil (1756). "Remarques sur un mémoire de M Halley, inséré dans les Transactions philosophiques de l'année 1692, No. 194, page 535, dans lequel M. Halley parlé du Saros des Chaldéens" [Remarks on a memoir of Mr. Halley, inserted in the Philosophical Transactions of the year 1692, issue 194, p. 535, in which Mr. Halley speaks about the Saros of the Chaldeans]. Histoire de l'Académie Royale des Sciences, avec les mémoires de mathématique et de physique (in French): 55–81.
  10. ^ "saros". Encarta Dictionary. Microsoft. Archived from the original on June 8, 2009.
  11. ^ Liddell H G, Scott R., Jones H S, McKenzie, R, 1843, Oxford University Press
  12. ^ Freeth, T., Bitsakis, Y., Moussas, X., Seiradakis, J. H., Tselikas, A., Mangou, H., ... & Edmunds, M. G. (2006). Decoding the ancient Greek astronomical calculator known as the Antikythera Mechanism. Nature, 444(7119), 587-591
  13. ^ Decoding an Ancient Computer, Scientific American, December 2009
  14. ^ Littmann, Mark; Fred Espenak; Ken Willcox (2008). Totality: Eclipses of the Sun. Oxford University Press. ISBN 978-0-19-953209-4.
  15. ^ Meeus, Jean (2004). Ch. 18 "About Saros and Inex series" in: Mathematical Astronomy Morsels III. Willmann-Bell, Richmond VA, USA.
  16. ^ Espenak, Fred; Jean Meeus (October 2006). "Five Millennium Canon of Solar Eclipses, Section 4 (NASA TP-2006-214141)" (PDF). NASA STI Program Office. Archived from the original (PDF) on 2007-06-20. Retrieved 2007-01-24.
  17. ^ G. van den Bergh (1955). Periodicity and Variation of Solar (and Lunar) Eclipses (2 vols.). H. D. Tjeenk Willink & Zoon N. V., Haarlem.
  18. ^ Bao-Lin Liu; Alan D. Fiala (1992). Canon of Lunar Eclipses, 1500 B.C. to A.D. 3000. Willmann-Bell, Richmond VA.
  19. ^ "NASA - Solar Eclipses: 2011 - 2020". eclipse.gsfc.nasa.gov.
  20. ^ "NASA - Lunar Eclipses: 2011 - 2020". eclipse.gsfc.nasa.gov.
  21. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros

Bibliography

External links

Read other articles:

العلاقات التونسية الكيريباتية تونس كيريباتي   تونس   كيريباتي تعديل مصدري - تعديل   العلاقات التونسية الكيريباتية هي العلاقات الثنائية التي تجمع بين تونس وكيريباتي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة…

Nicklas Pedersen Informasi pribadiTanggal lahir 10 Oktober 1987 (umur 36)Tempat lahir Køge, DenmarkTinggi 1,87 m (6 ft 1+1⁄2 in)Posisi bermain PenyerangInformasi klubKlub saat ini GroningenNomor 14Karier junior HerfølgeKarier senior*Tahun Tim Tampil (Gol)2004–2007 Herfølge 41 (18)2007–2009 Nordsjælland 26 (9)2009– Groningen 68 (11)Tim nasional‡2006 Denmark U-20 1 (0)2007–2008 Denmark U-21 12 (3)2010– Denmark 7 (0) * Penampilan dan gol di klub senior hany…

Cet article est une ébauche concernant la peinture. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Matin dans les Monts des GéantsArtiste Caspar David FriedrichDate entre 1810 et 1811Type Huile sur toileTechnique peintureDimensions (H × L) 108 × 170 cmMouvement RomantismeNo d’inventaire NG 10/85Localisation Alte Nationalgalerie, Berlin (Allemagne)modifier - modifier le code - modi…

Kenja no MagoGambar sampul novel ringan volume pertama賢者の孫(Kenja no Mago)GenreFantasi, isekai Seri novelPengarangTsuyoshi YoshiokaPenerbitShōsetsuka ni NarōTerbit2015 – sekarang Novel ringanPengarangTsuyoshi YoshiokaIlustratorSeiji KikuchiPenerbitEnterbrainImprintFamitsu BunkoDemografiPriaTerbitJuli 2015 – sekarangVolume17 (Daftar volume) MangaPengarangTsuyoshi YoshiokaIlustratorShunsuke OgataPenerbitKadokawa ShotenMajalahYoung Ace UpDemografiSeinenTerbitMaret 2016 – sekarangVolu…

Brachythecium rutabulum Gewoon dikkopmos Taxonomische indeling Rijk:Plantae (Planten)Stam:Bryophyta (Mossen)Klasse:BryopsidaOrde:HypnalesFamilie:Brachytheciaceae (dikkopmosfamilie)Geslacht:Brachythecium (dikkopmos) Soort Brachythecium rutabulum(Hedw.) Bruch, Schimp. & W.Gümbel (1853) Gewoon dikkopmos, habitus Afbeeldingen op Wikimedia Commons Brachythecium rutabulum op Wikispecies Portaal    Biologie Gewoon dikkopmos (Brachythecium rutabulum) is een soort mos uit het geslacht dikk…

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2021)   لمعانٍ أخرى، طالع دانيال مارتينيز (توضيح). دانيال مارتينيز معلومات شخصية الميلاد 17 يناير 1997 (26 سنة)  سان ميغيل، بوينس آيرس  الطول 1.73 م (5 قدم 8 ب…

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) جوشوا ميلز معلومات شخصية الميلاد سنة 1797  فرانسيستاون  الوفاة سنة 1841 (43–44 سنة)  كليفلاند، أوهايو  مواطنة الولايات المتحدة  الحياة العملية المهنة

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 21 de abril de 2014. Grupo Escultórico. La Cofradía de San Juan es una cofradía de carácter religioso y familiar que procesiona en la Semana Santa de Andorra (Teruel). Desde el año 2010 es Asociación Cultural regida por sus propios Estatutos. La cofradía es fundada en torno a los años 1800-1825 por el matrimonio andorrano de Macario Valero Félez y Josefina Meseguer, de qu…

галактика Бебі бум Галактика Бебі-бум — червоно-зелена пляма по центру.[1]Відкриття 2008Розташування (епоха J2000.0)Сузір'я СекстантПряме піднесення 10г 00х 54.52с[2]Схилення +2° 34′ 35.17″Червоний зсув 280 919 км/сВідстань 12,2 млрд.ХарактеристикиГаббл-тип гала

S.E.2 The S.E.2 in its final form, at the Royal Aircraft Factory, Farnborough Role Scout aircraftType of aircraft National origin United Kingdom Manufacturer Royal Aircraft Factory Designer Geoffrey de Havilland (B.S.1) First flight March 1913 Introduction 1914 Retired 1915 Primary user Royal Flying Corps Number built 1 The Royal Aircraft Factory S.E.2 (Scout Experimental) was an early British single-seat scout aircraft. Designed and built at the Royal Aircraft Factory in 1912–13 as the B…

هناك عدة نظريات عن هوية أبناء الله (بني إلوهيم בני האלהים) المذكورين في سفر التكوين 6: 1-4 مع بنات الناس.[1][2][3] 6: 1 وَحَدَثَ لَمَّا ابْتَدَا النَّاسُ يَكْثُرُونَ عَلَى الارْضِ وَوُلِدَ لَهُمْ بَنَاتٌ 6: 2 انَّ ابْنَاءَ اللهِ رَاوا بَنَاتِ النَّاسِ انَّهُنَّ حَسَنَات…

أنديرا غاندي (بالهندية: इन्दिरा प्रियदर्शिनी गान्धी)‏    معلومات شخصية اسم الولادة (بالهندية: इन्दिरा नेहरू)‏،  و(بالإنجليزية: Indira Nehru)‏،  و(بالإنجليزية: Indira Priyadarshini Nehru)‏  الميلاد 19 نوفمبر 1917[1][2][3][4][5][6][7]  الله

Le théorème de Krein-Milman est un théorème, démontré par Mark Krein et David Milman en 1940[1], qui généralise à certains espaces vectoriels topologiques un résultat géométrique portant sur les ensembles convexes énoncé par Hermann Minkowski en dimension finie (et souvent improprement dénommé lui-même « théorème de Krein-Milman »). Une forme particulièrement simplifiée du théorème s'énonce : tout polygone convexe est l'enveloppe convexe de l'ensemble de …

باغتشة جيق تقسيم إداري البلد إيران  [1] إحداثيات 37°30′33″N 46°37′19″E / 37.509167°N 46.621944°E / 37.509167; 46.621944  الرمز الجغرافي 22852  تعديل مصدري - تعديل   باغتشة جيق هي قرية في مقاطعة هشترود، إيران. عدد سكان هذه القرية هو 73 في سنة 2006.[2] مراجع ^   صفحة باغتشة جيق في …

Constituency in Ghana Builsa Northconstituencyfor the Parliament of GhanaDistrictBuilsa DistrictRegionUpper East Region of GhanaCurrent constituencyPartyNational Democratic CongressMPHon. James Agalga Builsa North is one of the constituencies represented in the Parliament of Ghana. It elects one Member of Parliament (MP) by the first past the post system of election. Builsa North is located in the Builsa district of the Upper East Region of Ghana. Boundaries The seat is located within the Builsa…

Diecezja VinhGiáo phận Vinh Państwo  Wietnam Siedziba VinhTòa Giám mục, Xã Đoài, Nghi Diên, Nghi Lộc, Nghệ An, Việt Nam Data powołania 27 marca 1846 Wyznanie katolickie Kościół rzymskokatolicki Metropolia Hanoi Katedra Wniebowzięcia NMP Biskup diecezjalny Alphonse Nguyễn Hữu Long PSS Biskup pomocniczy Pierre Nguyễn Văn Viên Dane statystyczne (2018) Liczba wiernych• odsetek wiernych 281 9349,2% Liczba kapłanów• w tym die…

American politician from Louisiana The Kingfish redirects here. For other uses, see Kingfish (disambiguation) and Huey Long (disambiguation). Huey LongUnited States Senatorfrom LouisianaIn officeJanuary 25, 1932 – September 10, 1935Preceded byJoseph E. RansdellSucceeded byRose McConnell Long40th Governor of LouisianaIn officeMay 21, 1928 – January 25, 1932LieutenantPaul N. CyrAlvin KingPreceded byOramel H. SimpsonSucceeded byAlvin King Personal detailsBorn(1893-08-30)August…

Dress of the Year exhibit at the Fashion Museum, Bath. From left to right, outfits by Christopher Kane (2013), Mary Quant (1963), and John Galliano (1987). The Dress of the Year is an annual fashion award run by the Fashion Museum, Bath from 1963. Each year since 1963, the Museum has asked a fashion journalist to select a dress or outfit that best represents the most important new ideas in contemporary fashion.[1] For 2010 the Museum broke with tradition by asking the milliner Stephen Jo…

1995 murder in Corpus Christi, Texas, US Murder of Selena Quintanilla-PérezGraffiti left by fans at the motel room door where Selena met with Saldívar before being shot by herLocationDays Inn, Corpus Christi, Texas, USCoordinates27°48′05.6″N 97°27′15.2″W / 27.801556°N 97.454222°W / 27.801556; -97.454222DateMarch 31, 1995; 28 years ago (1995-03-31) 11:48 am (CST) (Central Time Zone)Attack typeMurder by shootingWeaponRevolverVictimSelena Quin…

كورناي    شعار الاسم الرسمي (بالفرنسية: Cornay)‏  الإحداثيات 49°18′06″N 4°56′57″E / 49.301666666667°N 4.9491666666667°E / 49.301666666667; 4.9491666666667[1]  [2] تقسيم إداري  البلد فرنسا[3]  التقسيم الأعلى الأردين  خصائص جغرافية  المساحة 10.94 كيلومتر مربع[1]  عدد الس…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.139.87.134