A total solar eclipse occurred at the Moon's descending node of orbit on Monday, June 16, 1806 (sometimes dubbed Tecumseh's Eclipse), with a magnitude of 1.0604. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days before perigee (on June 18, 1806, at 9:30 UTC), the Moon's apparent diameter was larger.[1]
The eclipse was predicted by Shawnee prophet Tenskwatawa and its appearance aided unity among the Indigenous peoples of North America. Astronomer José Joaquín de Ferrer observed and named the solar corona during this eclipse.
Tenskwatawa's prediction
It has been called Tecumseh's Eclipse after the Shawnee chief, Tecumseh. He realized that the only hope for the various tribes in east and central North America was to join. He was assisted by his brother, Tenskwatawa, called The Prophet, who called for a rejection of European influence and a return to traditional values. This tribal unity threatened William Henry Harrison, the Territorial Governor of Indiana and future 9th President of the United States. Harrison tried to discredit the Shawnee leader by challenging Tenskwatawa to prove his powers. He wrote: "If he (Tenskwatawa) is really a prophet, ask him to cause the Sun to stand still or the Moon to alter its course, the rivers to cease to flow or the dead to rise from their graves."
Tenskwatawa declared that the Great Spirit was angry at Harrison and would give a sign. "Fifty days from this day there will be no cloud in the sky. Yet, when the Sun has reached its highest point, at that moment will the Great Spirit take it into her hand and hide it from us. The darkness of night will thereupon cover us and the stars will shine round about us. The birds will roost and the night creatures will awaken and stir." On that day, there was an eclipse, and Harrison's attempt to divide the Shawnee people backfired spectacularly. Then, Tecumseh ordered the Great Spirit to release the sun.[2]
Observations
José Joaquín de Ferrer observed from Kinderhook, New York and gave the name corona to the glow of the faint outer atmosphere of the Sun seen during a total eclipse. He proposed that the corona must belong to the Sun, not the Moon, because of its great size. Ferrer also stated that during the total eclipse of 1806, the irregularities of the Moon's surface were plainly discernible.[3]
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[5]
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]
The partial solar eclipses on January 30, 1805 and July 26, 1805 occur in the previous lunar year eclipse set, and the partial solar eclipse on October 19, 1808 occurs in the next lunar year eclipse set.
This eclipse is a part of Saros series 124, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on March 6, 1049. It contains total eclipses from June 12, 1211 through September 22, 1968, and a hybrid eclipse on October 3, 1986. There are no annular eclipses in this set. The series ends at member 73 as a partial eclipse on May 11, 2347. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 39 at 5 minutes, 46 seconds on May 3, 1734. All eclipses in this series occur at the Moon’s descending node of orbit.[7]
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
24 eclipse events between August 28, 1802 and August 28, 1859
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.