April 2033 lunar eclipse

April 2033 lunar eclipse
Total eclipse
The Moon's hourly motion shown right to left
DateApril 14, 2033
Gamma0.3954
Magnitude1.0955
Saros cycle132 (31 of 71)
Totality49 minutes, 12 seconds
Partiality215 minutes, 0 seconds
Penumbral361 minutes, 11 seconds
Contacts (UTC)
P116:13:15
U117:26:21
U218:49:15
Greatest19:13:51
U319:38:27
U421:01:21
P422:14:27

A total lunar eclipse will occur at the Moon’s ascending node of orbit on Thursday, April 14, 2033,[1] with an umbral magnitude of 1.0955. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 2.9 days before apogee (on April 11, 2033, at 22:30 UTC), the Moon's apparent diameter will be smaller.[2]

This lunar eclipse is the third of a tetrad, with four total lunar eclipses in series, the others being on April 25, 2032; October 18, 2032; and October 8, 2033.

Visibility

The eclipse will be completely visible over east Africa, most of Asia, and western Australia, seen rising over west and central Africa, Europe, and eastern South America and setting over northeast Asia and Australia.[3]

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

April 14, 2033 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 2.17223
Umbral Magnitude 1.09553
Gamma 0.39543
Sun Right Ascension 01h33m13.7s
Sun Declination +09°43'50.2"
Sun Semi-Diameter 15'56.7"
Sun Equatorial Horizontal Parallax 08.8"
Moon Right Ascension 13h33m37.2s
Moon Declination -09°23'08.7"
Moon Semi-Diameter 14'48.5"
Moon Equatorial Horizontal Parallax 0°54'21.0"
ΔT 75.5 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of March–April 2033
March 30
Descending node (new moon)
April 14
Ascending node (full moon)
Partial solar eclipse
Solar Saros 120
Total lunar eclipse
Lunar Saros 132

Eclipses in 2033

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 132

Inex

Triad

Lunar eclipses of 2031–2034

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipse on June 5, 2031 occurs in the previous lunar year eclipse set.

Lunar eclipse series sets from 2031 to 2034
Ascending node   Descending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
112 2031 May 07
Penumbral
−1.0694 117 2031 Oct 30
Penumbral
1.1774
122 2032 Apr 25
Total
−0.3558 127 2032 Oct 18
Total
0.4169
132 2033 Apr 14
Total
0.3954 137 2033 Oct 08
Total
−0.2889
142 2034 Apr 03
Penumbral
1.1144 147 2034 Sep 28
Partial
−1.0110

Saros 132

This eclipse is a part of Saros series 132, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on May 12, 1492. It contains partial eclipses from August 16, 1636 through March 24, 1997; total eclipses from April 4, 2015 through August 2, 2213; and a second set of partial eclipses from August 13, 2231 through November 30, 2411. The series ends at member 71 as a penumbral eclipse on June 26, 2754.

The longest duration of totality will be produced by member 36 at 106 minutes, 6 seconds on June 9, 2123. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]

Greatest First

The greatest eclipse of the series will occur on 2123 Jun 09, lasting 106 minutes, 6 seconds.[7]
Penumbral Partial Total Central
1492 May 12
1636 Aug 16
2015 Apr 04
2069 May 06
Last
Central Total Partial Penumbral
2177 Jul 11
2213 Aug 02
2411 Nov 30
2754 Jun 26

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

The tritos series repeats 31 days short of 11 years at alternating nodes. Sequential events have incremental Saros cycle indices.

This series produces 23 total eclipses between June 22, 1880 and August 9, 2120.

Tritos eclipse series (subset 1901–2100)
Ascending node   Descending node
Saros Date
Viewing
Type
chart
Saros Date
Viewing
Type
chart
120 1902 Apr 22
Total
121 1913 Mar 22
Total
122 1924 Feb 20
Total
123 1935 Jan 19
Total
124 1945 Dec 19
Total
125 1956 Nov 18
Total
126 1967 Oct 18
Total
127 1978 Sep 16
Total
128 1989 Aug 17
Total
129 2000 Jul 16
Total
130 2011 Jun 15
Total
131 2022 May 16
Total
132 2033 Apr 14
Total
133 2044 Mar 13
Total
134 2055 Feb 11
Total
135 2066 Jan 11
Total
136 2076 Dec 10
Total
137 2087 Nov 10
Total
138 2098 Oct 10
Total

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 139.

April 8, 2024 April 20, 2042

See also

Notes

  1. ^ "April 14–15, 2033 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 21 November 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 21 November 2024.
  3. ^ "Total Lunar Eclipse of 2033 Apr 14" (PDF). NASA. Retrieved 21 November 2024.
  4. ^ "Total Lunar Eclipse of 2033 Apr 14". EclipseWise.com. Retrieved 21 November 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Lunar Eclipses of Saros 132". eclipse.gsfc.nasa.gov.
  7. ^ Listing of Eclipses of series 132
  8. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros