June 1946 lunar eclipse

June 1946 lunar eclipse
Total eclipse
The Moon's hourly motion shown right to left
DateJune 14, 1946
Gamma−0.2324
Magnitude1.3983
Saros cycle129 (34 of 71)
Totality91 minutes, 9 seconds
Partiality229 minutes, 3 seconds
Penumbral369 minutes, 12 seconds
Contacts (UTC)
P115:34:13
U116:44:19
U217:54:16
Greatest18:38:49
U319:24:24
U420:33:21
P421:43:24

A total lunar eclipse occurred at the Moon’s descending node of orbit on Friday, June 14, 1946,[1] with an umbral magnitude of 1.3983. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 1.8 days after apogee (on June 12, 1946, at 22:40 UTC), the Moon's apparent diameter was smaller.[2]

This was the first central lunar eclipse of Lunar Saros 129.

Visibility

The eclipse was completely visible over east Africa, central, south, and southeast Asia, western Australia, and Antarctica, seen rising over much of Africa, eastern South America, Europe, and west Asia and setting over northeast Asia and eastern Australia.[3]

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

June 14, 1946 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 2.46538
Umbral Magnitude 1.39833
Gamma −0.23239
Sun Right Ascension 05h29m50.7s
Sun Declination +23°15'55.5"
Sun Semi-Diameter 15'44.7"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 17h29m42.4s
Moon Declination -23°28'21.8"
Moon Semi-Diameter 14'45.4"
Moon Equatorial Horizontal Parallax 0°54'09.4"
ΔT 27.6 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of May–June 1946
May 30
Ascending node (new moon)
June 14
Descending node (full moon)
June 29
Ascending node (new moon)
Partial solar eclipse
Solar Saros 117
Total lunar eclipse
Lunar Saros 129
Partial solar eclipse
Solar Saros 155

Eclipses in 1946

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 129

Inex

Triad

Lunar eclipses of 1944–1947

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on February 9, 1944 and August 4, 1944 occur in the previous lunar year eclipse set.

Lunar eclipse series sets from 1944 to 1947
Descending node   Ascending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
109 1944 Jul 06
Penumbral
1.2597 114 1944 Dec 29
Penumbral
−1.0115
119 1945 Jun 25
Partial
0.5370 124 1945 Dec 19
Total
−0.2845
129 1946 Jun 14
Total
−0.2324 134 1946 Dec 08
Total
0.3864
139 1947 Jun 03
Partial
−0.9850 144 1947 Nov 28
Penumbral
1.0838

Saros 129

This eclipse is a part of Saros series 129, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on June 10, 1351. It contains partial eclipses from September 26, 1531 through May 11, 1892; total eclipses from May 24, 1910 through September 8, 2090; and a second set of partial eclipses from September 20, 2108 through April 26, 2469. The series ends at member 71 as a penumbral eclipse on July 24, 2613.

The longest duration of totality was produced by member 37 at 106 minutes, 24 seconds on July 16, 2000. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

Greatest First

The greatest eclipse of the series occurred on 2000 Jul 16, lasting 106 minutes, 24 seconds.[7]
Penumbral Partial Total Central
1351 Jun 10
1531 Sep 26
1910 May 24
1946 Jun 14
Last
Central Total Partial Penumbral
2036 Aug 07
2090 Sep 08
2469 Apr 26
2613 Jul 24

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1804 Jul 22
(Saros 116)
1815 Jun 21
(Saros 117)
1826 May 21
(Saros 118)
1837 Apr 20
(Saros 119)
1848 Mar 19
(Saros 120)
1859 Feb 17
(Saros 121)
1870 Jan 17
(Saros 122)
1880 Dec 16
(Saros 123)
1891 Nov 16
(Saros 124)
1902 Oct 17
(Saros 125)
1913 Sep 15
(Saros 126)
1924 Aug 14
(Saros 127)
1935 Jul 16
(Saros 128)
1946 Jun 14
(Saros 129)
1957 May 13
(Saros 130)
1968 Apr 13
(Saros 131)
1979 Mar 13
(Saros 132)
1990 Feb 09
(Saros 133)
2001 Jan 09
(Saros 134)
2011 Dec 10
(Saros 135)
2022 Nov 08
(Saros 136)
2033 Oct 08
(Saros 137)
2044 Sep 07
(Saros 138)
2055 Aug 07
(Saros 139)
2066 Jul 07
(Saros 140)
2077 Jun 06
(Saros 141)
2088 May 05
(Saros 142)
2099 Apr 05
(Saros 143)
2110 Mar 06
(Saros 144)
2121 Feb 02
(Saros 145)
2132 Jan 02
(Saros 146)
2142 Dec 03
(Saros 147)
2153 Nov 01
(Saros 148)
2164 Sep 30
(Saros 149)
2175 Aug 31
(Saros 150)
2186 Jul 31
(Saros 151)
2197 Jun 29
(Saros 152)

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 136.

June 8, 1937 June 20, 1955

See also

Notes

  1. ^ "June 14–15, 1946 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 20 December 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 20 December 2024.
  3. ^ "Total Lunar Eclipse of 1946 Jun 14" (PDF). NASA. Retrieved 20 December 2024.
  4. ^ "Total Lunar Eclipse of 1946 Jun 14". EclipseWise.com. Retrieved 20 December 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Lunar Eclipses of Saros 129". eclipse.gsfc.nasa.gov.
  7. ^ Listing of Eclipses of series 129
  8. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros


Information related to June 1946 lunar eclipse