SL2(R)

In mathematics, the special linear group SL(2, R) or SL2(R) is the group of 2 × 2 real matrices with determinant one:

It is a connected non-compact simple real Lie group of dimension 3 with applications in geometry, topology, representation theory, and physics.

SL(2, R) acts on the complex upper half-plane by fractional linear transformations. The group action factors through the quotient PSL(2, R) (the 2 × 2 projective special linear group over R). More specifically,

PSL(2, R) = SL(2, R) / {±I},

where I denotes the 2 × 2 identity matrix. It contains the modular group PSL(2, Z).

Also closely related is the 2-fold covering group, Mp(2, R), a metaplectic group (thinking of SL(2, R) as a symplectic group).

Another related group is SL±(2, R), the group of real 2 × 2 matrices with determinant ±1; this is more commonly used in the context of the modular group, however.

Descriptions

SL(2, R) is the group of all linear transformations of R2 that preserve oriented area. It is isomorphic to the symplectic group Sp(2, R) and the special unitary group SU(1, 1). It is also isomorphic to the group of unit-length coquaternions. The group SL±(2, R) preserves unoriented area: it may reverse orientation.

The quotient PSL(2, R) has several interesting descriptions, up to Lie group isomorphism:

Elements of the modular group PSL(2, Z) have additional interpretations, as do elements of the group SL(2, Z) (as linear transforms of the torus), and these interpretations can also be viewed in light of the general theory of SL(2, R).

Homographies

Elements of PSL(2, R) are homographies on the real projective line R ∪ {∞}:

These projective transformations form a subgroup of PSL(2, C), which acts on the Riemann sphere by Möbius transformations.

When the real line is considered the boundary of the hyperbolic plane, PSL(2, R) expresses hyperbolic motions.

Möbius transformations

Elements of PSL(2, R) act on the complex plane by Möbius transformations:

This is precisely the set of Möbius transformations that preserve the upper half-plane. It follows that PSL(2, R) is the group of conformal automorphisms of the upper half-plane. By the Riemann mapping theorem, it is also isomorphic to the group of conformal automorphisms of the unit disc.

These Möbius transformations act as the isometries of the upper half-plane model of hyperbolic space, and the corresponding Möbius transformations of the disc are the hyperbolic isometries of the Poincaré disk model.

The above formula can be also used to define Möbius transformations of dual and double (aka split-complex) numbers. The corresponding geometries are in non-trivial relations[1] to Lobachevskian geometry.

Adjoint representation

The group SL(2, R) acts on its Lie algebra sl(2, R) by conjugation (remember that the Lie algebra elements are also 2 × 2 matrices), yielding a faithful 3-dimensional linear representation of PSL(2, R). This can alternatively be described as the action of PSL(2, R) on the space of quadratic forms on R2. The result is the following representation:

The Killing form on sl(2, R) has signature (2,1), and induces an isomorphism between PSL(2, R) and the Lorentz group SO+(2,1). This action of PSL(2, R) on Minkowski space restricts to the isometric action of PSL(2, R) on the hyperboloid model of the hyperbolic plane.

Classification of elements

The eigenvalues of an element A ∈ SL(2, R) satisfy the characteristic polynomial

and therefore

This leads to the following classification of elements, with corresponding action on the Euclidean plane:

  • If , then A is called elliptic, and is conjugate to a rotation.
  • If , then A is called parabolic, and is a shear mapping.
  • If , then A is called hyperbolic, and is a squeeze mapping.

The names correspond to the classification of conic sections by eccentricity: if one defines eccentricity as half the absolute value of the trace (ε = 1/2 |tr|; dividing by 2 corrects for the effect of dimension, while absolute value corresponds to ignoring an overall factor of ±1 such as when working in PSL(2, R)), then this yields: , elliptic; , parabolic; , hyperbolic.

The identity element 1 and negative identity element −1 (in PSL(2, R) they are the same), have trace ±2, and hence by this classification are parabolic elements, though they are often considered separately.

The same classification is used for SL(2, C) and PSL(2, C) (Möbius transformations) and PSL(2, R) (real Möbius transformations), with the addition of "loxodromic" transformations corresponding to complex traces; analogous classifications are used elsewhere.

A subgroup that is contained with the elliptic (respectively, parabolic, hyperbolic) elements, plus the identity and negative identity, is called an elliptic subgroup (respectively, parabolic subgroup, hyperbolic subgroup).

The trichotomy of SL(2, R) into elliptic, parabolic, and hyperbolic elements is a classification into subsets, not subgroups: these sets are not closed under multiplication (the product of two parabolic elements need not be parabolic, and so forth). However, each element is conjugate to a member of one of 3 standard one-parameter subgroups (possibly times ±1), as detailed below.

Topologically, as trace is a continuous map, the elliptic elements (excluding ±1) form an open set, as do the hyperbolic elements (excluding ±1). By contrast, the parabolic elements, together with ±1, form a closed set that is not open.

Elliptic elements

The eigenvalues for an elliptic element are both complex, and are conjugate values on the unit circle. Such an element is conjugate to a rotation of the Euclidean plane – they can be interpreted as rotations in a possibly non-orthogonal basis – and the corresponding element of PSL(2, R) acts as (conjugate to) a rotation of the hyperbolic plane and of Minkowski space.

Elliptic elements of the modular group must have eigenvalues {ω, ω−1}, where ω is a primitive 3rd, 4th, or 6th root of unity. These are all the elements of the modular group with finite order, and they act on the torus as periodic diffeomorphisms.

Elements of trace 0 may be called "circular elements" (by analogy with eccentricity) but this is rarely done; they correspond to elements with eigenvalues ±i, and are conjugate to rotation by 90°, and square to -I: they are the non-identity involutions in PSL(2).

Elliptic elements are conjugate into the subgroup of rotations of the Euclidean plane, the special orthogonal group SO(2); the angle of rotation is arccos of half of the trace, with the sign of the rotation determined by orientation. (A rotation and its inverse are conjugate in GL(2) but not SL(2).)

Parabolic elements

A parabolic element has only a single eigenvalue, which is either 1 or -1. Such an element acts as a shear mapping on the Euclidean plane, and the corresponding element of PSL(2, R) acts as a limit rotation of the hyperbolic plane and as a null rotation of Minkowski space.

Parabolic elements of the modular group act as Dehn twists of the torus.

Parabolic elements are conjugate into the 2 component group of standard shears × ±I: . In fact, they are all conjugate (in SL(2)) to one of the four matrices , (in GL(2) or SL±(2), the ± can be omitted, but in SL(2) it cannot).

Hyperbolic elements

The eigenvalues for a hyperbolic element are both real, and are reciprocals. Such an element acts as a squeeze mapping of the Euclidean plane, and the corresponding element of PSL(2, R) acts as a translation of the hyperbolic plane and as a Lorentz boost on Minkowski space.

Hyperbolic elements of the modular group act as Anosov diffeomorphisms of the torus.

Hyperbolic elements are conjugate into the 2 component group of standard squeezes × ±I: ; the hyperbolic angle of the hyperbolic rotation is given by arcosh of half of the trace, but the sign can be positive or negative: in contrast to the elliptic case, a squeeze and its inverse are conjugate in SL₂ (by a rotation in the axes; for standard axes, a rotation by 90°).

Conjugacy classes

By Jordan normal form, matrices are classified up to conjugacy (in GL(n, C)) by eigenvalues and nilpotence (concretely, nilpotence means where 1s occur in the Jordan blocks). Thus elements of SL(2) are classified up to conjugacy in GL(2) (or indeed SL±(2)) by trace (since determinant is fixed, and trace and determinant determine eigenvalues), except if the eigenvalues are equal, so ±I and the parabolic elements of trace +2 and trace -2 are not conjugate (the former have no off-diagonal entries in Jordan form, while the latter do).

Up to conjugacy in SL(2) (instead of GL(2)), there is an additional datum, corresponding to orientation: a clockwise and counterclockwise (elliptical) rotation are not conjugate, nor are a positive and negative shear, as detailed above; thus for absolute value of trace less than 2, there are two conjugacy classes for each trace (clockwise and counterclockwise rotations), for absolute value of the trace equal to 2 there are three conjugacy classes for each trace (positive shear, identity, negative shear), and for absolute value of the trace greater than 2 there is one conjugacy class for a given trace.

Iwasawa or KAN decomposition

The Iwasawa decomposition of a group is a method to construct the group as a product of three Lie subgroups K, A, N. For these three subgroups are

These three elements are the generators of the Elliptic, Hyperbolic, and Parabolic subsets respectively.

Topology and universal cover

As a topological space, PSL(2, R) can be described as the unit tangent bundle of the hyperbolic plane. It is a circle bundle, and has a natural contact structure induced by the symplectic structure on the hyperbolic plane. SL(2, R) is a 2-fold cover of PSL(2, R), and can be thought of as the bundle of spinors on the hyperbolic plane.

The fundamental group of SL(2, R) is the infinite cyclic group Z. The universal covering group, denoted , is an example of a finite-dimensional Lie group that is not a matrix group. That is, admits no faithful, finite-dimensional representation.

As a topological space, is a line bundle over the hyperbolic plane. When imbued with a left-invariant metric, the 3-manifold becomes one of the eight Thurston geometries. For example, is the universal cover of the unit tangent bundle to any hyperbolic surface. Any manifold modeled on is orientable, and is a circle bundle over some 2-dimensional hyperbolic orbifold (a Seifert fiber space).

The braid group B3 is the universal central extension of the modular group.

Under this covering, the preimage of the modular group PSL(2, Z) is the braid group on 3 generators, B3, which is the universal central extension of the modular group. These are lattices inside the relevant algebraic groups, and this corresponds algebraically to the universal covering group in topology.

The 2-fold covering group can be identified as Mp(2, R), a metaplectic group, thinking of SL(2, R) as the symplectic group Sp(2, R).

The aforementioned groups together form a sequence:

However, there are other covering groups of PSL(2, R) corresponding to all n, as n Z < Z ≅ π1 (PSL(2, R)), which form a lattice of covering groups by divisibility; these cover SL(2, R) if and only if n is even.

Algebraic structure

The center of SL(2, R) is the two-element group {±1}, and the quotient PSL(2, R) is simple.

Discrete subgroups of PSL(2, R) are called Fuchsian groups. These are the hyperbolic analogue of the Euclidean wallpaper groups and Frieze groups. The most famous of these is the modular group PSL(2, Z), which acts on a tessellation of the hyperbolic plane by ideal triangles.

The circle group SO(2) is a maximal compact subgroup of SL(2, R), and the circle SO(2) / {±1} is a maximal compact subgroup of PSL(2, R).

The Schur multiplier of the discrete group PSL(2, R) is much larger than Z, and the universal central extension is much larger than the universal covering group. However these large central extensions do not take the topology into account and are somewhat pathological.

Representation theory

SL(2, R) is a real, non-compact simple Lie group, and is the split-real form of the complex Lie group SL(2, C). The Lie algebra of SL(2, R), denoted sl(2, R), is the algebra of all real, traceless 2 × 2 matrices. It is the Bianchi algebra of type VIII.

The finite-dimensional representation theory of SL(2, R) is equivalent to the representation theory of SU(2), which is the compact real form of SL(2, C). In particular, SL(2, R) has no nontrivial finite-dimensional unitary representations. This is a feature of every connected simple non-compact Lie group. For outline of proof, see non-unitarity of representations.

The infinite-dimensional representation theory of SL(2, R) is quite interesting. The group has several families of unitary representations, which were worked out in detail by Gelfand and Naimark (1946), V. Bargmann (1947), and Harish-Chandra (1952).

See also

References

  1. ^ Kisil, Vladimir V. (2012). Geometry of Möbius transformations. Elliptic, parabolic and hyperbolic actions of SL(2,R). London: Imperial College Press. p. xiv+192. doi:10.1142/p835. ISBN 978-1-84816-858-9. MR 2977041.

Read other articles:

Fula (Fulani atau Fulɓe) Wanita Fula di Provinsi Timur KamerunJumlah populasica. 25 juta jiwa[1][2]Daerah dengan populasi signifikanAfrika Barat dan Afrika Tengah Nigeria15.400.000[3][4] Guinea5.070.160[5] Senegal3.182.300[6] Mali2.870.000[7] Kamerun2.344.000[8] Niger2.046.330[9] Burkina Faso1.920.050[10] Mauritania916.113[11] Benin750.000[8] Guine...

 

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Kuta Rock City – berita · surat kabar · buku · cendekiawan · JSTOR Kuta Rock CityAlbum studio karya Superman Is DeadDirilisJuli 2003Direkam2003GenrePunk rock, Pop punkLabelSony Music IndonesiaKronologi Su...

 

 

Republik Tanjung VerdeRepública de Cabo Verde (Portugis) Bendera Lambang Semboyan: Unidade, Trabalho, Progresso(Portugis: Persatuan, Pekerjaan, Kemajuan)Lagu kebangsaan: Cântico da LiberdadeIbu kota(dan kota terbesar)Praia14°55′N 23°31′W / 14.917°N 23.517°W / 14.917; -23.517Bahasa resmiPortugisPemerintahanRepublik semi-presidensial• Presiden José Maria Neves• Perdana Menteri Ulisses Correia e Silva LegislatifAssembleia NacionalKemerde...

  لمعانٍ أخرى، طالع هوبارت (توضيح). هوبارت الإحداثيات 42°22′17″N 74°40′07″W / 42.3714°N 74.6686°W / 42.3714; -74.6686  [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة ديلاوير  خصائص جغرافية  المساحة 1.307515 كيلومتر مربع1.307513 كيلومتر مربع (1 أبري...

 

 

Our Love StoryNama lainHangul연애담 Alih Aksara yang DisempurnakanYeon-ae-dam SutradaraLee Hyun-juProduserKim Bo-raKim Tae-kyunLee Ji-seungLim Charn-sangPark Heon-sooDitulis olehLee Hyun-juPemeranLee Sang-heeRyu Sun-youngPenata musikChoi Yong-rakSinematograferKwon Yong-jikPenyuntingLee Hyun-juPerusahaanproduksiKorean Academy of Film ArtsDistributorIndie PlugTanggal rilis 01 Mei 2016 (2016-05-01) (JIFF) 17 November 2016 (2016-11-17) (Korea SElatan) Durasi99 men...

 

 

Gert-Jan Segers Gert Jan Maarten (Gert-Jan) Segers (lahir 9 Juli 1969 di Lisse) adalah seorang politikus Belanda. Sebagai anggota UniKristen (CU), dia adalah anggota Dewan Perwakilan dari 20 September 2012 hingga 24 Januari 2023. Referensi Drs. G.J.M. (Gert-Jan) Segers Diarsipkan 2020-10-09 di Wayback Machine., Parlement.com lbs Anggota Tweede Kamer (2021–2023)31 Maret 2021 – 6 Desember 2023Partai Rakyat untuk Kebebasan dan Demokrasi (VVD – 34) Hermans Aartsen <Van Ark> Becker Bev...

2022 concert tour by Kid Cudi A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (July 2022) (Learn how and when to remove this template message) To the Moon World TourTour by Kid CudiLocation Asia Europe North America Associated albumMan on the Moon III: The ChosenStart dateAugust 16, 2022End dateNovember 22, 20...

 

 

This article needs to be updated. Relevant discussion may be found on the talk page. Please help update this article to reflect recent events or newly available information. (October 2022) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Patten University – news · newspapers · books · scholar · JSTOR (October...

 

 

Raja Portugal dan Algarve Bekas Kerajaan Lambang Royal Manuel II Penguasa pertama D. Afonso I Penguasa terakhir D. Manuel II Gelar Gaya monarki Portugis Penunjuk Turun-temurun Pendirian 25 Juli 1139 Pembubaran 5 Oktober 1910 Penuntut takhta Duarte Pio, Pangeran Braganza Berikut ini adalah daftar raja Portugal. Kerajaan Portugal merdeka dari Kerajaan León. Kemudian pada tahun 1094, puteri Raja Alfonso VI dari León, Teresa, menikah dengan Henri dari Burgundia, yang sejak tahun 1096 bergelar ...

Pemandangan Ta' Qali dari Mdina Ta' Qali adalah sebuah lapangan terbuka di kawasan Attard di tengah Malta, yang terdiri dari stadion sepak bola nasional, Taman Nasional Ta' Qali, sebuah desa kerajinan, dan sebuah pasar sayuran nasional yang dikenal sebagai Pitkalija. Kedubes AS yang baru dibangun berada di seberang Taman Nasional Ta'Qali.[1] Pada Juli 2011, kedubes tersebut berpindah ke Ta'Qali dari Floriana dimana kedubes tersebut berdiri nyaris lima puluh tahun.[2] Referensi...

 

 

Farrington FieldFarrington Field in Fort Worth, TexasLocation1501 N. University Dr.Fort Worth, TexasCoordinates32°44′45″N 97°21′37″W / 32.745743°N 97.360218°W / 32.745743; -97.360218OwnerFort Worth ISDCapacity18,500Record attendance24,836 (November 23, 1944 North Side H.S. vs. Paschal H.S.)SurfaceartificialConstructionBuilt1938–1939OpenedNovember 3, 1939Renovated2010Construction cost$400,000ArchitectPreston M. GerenGeneral contractorGeneral Construction C...

 

 

The member-states of the European Union by the European parliamentary affiliations of their leaders, as of 1 January 2006. This article describes the party affiliations of the leaders of each member-state represented in the European Council during the year 2006. The list below gives the political party that each head of government, or head of state, belongs to at the national level, as well as the European political alliance to which that national party belongs. The states are listed from mo...

After Hours til Dawn TourThe Weeknd al Foro Sol di Città del Messico nel 2023Tour di The WeekndAlbumAfter Hours e Dawn FM Inizio Filadelfia 14 luglio 2022 Fine Guadalajara 25 ottobre 2023 Tappe3 Spettacoli21 in Nord America30 in Europa13 in America Latina64 totali Cronologia dei tour di The Weeknd The Weeknd Asia Tour(2018) L'After Hours til Dawn Tour, noto precedentemente come The After Hours Tour, è il sesto tour musicale del cantante canadese The Weeknd, a supporto dei suoi quarto e ...

 

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2023) المنطقة الدبلوماسية المنطقة الدبلوماسية منطقة الاسم الرسمي المنطقة الدبلوماسية (البحرين) الإحداثيات 26°14�...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2012. ArmançonCiri-ciri fisikMuara sungaiYonnePanjang202 kmLuas DASDAS: 2,990 km² Sungai Armançon mengaliri wilayah barat laut Burgundia di Prancis. Bermuara di département Côte-d'Or dan mengalir ke Yonne (tepi kanan) di Migennes. Bermuara di ketinggian 3...

 

 

Rough, unfinished woollen fabric, of a soft, open texture This article is about the cloth. For the river in Scotland and England, see River Tweed. For other uses, see Tweed (disambiguation). Harris Tweed woven in a herringbone twill pattern, mid-20th century Tweed is a rough, woollen fabric, of a soft, open, flexible texture, resembling cheviot or homespun, but more closely woven. It is usually woven with a plain weave, twill or herringbone structure. Colour effects in the yarn may be obtaine...

Pentossido di niobioStruttura di Lewis del pentossido di niobio Struttura 3D sfere-stecche del pentossio di niobio Struttura 3D van der Waals del pentossido di niobio Nome IUPACOssido di niobio (V) [1] Caratteristiche generaliFormula bruta o molecolareNb2O5 Massa molecolare (u)265,81 g/mol Aspettosolido biancastro Numero CAS1313-96-8 Immagine_3D Numero EINECS215-213-6 PubChem123105 e 16218255 SMILESO=[Nb](=O)O[Nb](=O)=O Proprietà chimico-fisicheDensità (g/cm3, in c.s.)4,5 (20 °C) S...

 

 

Pondok Pesantren LirboyoAlamatKelurahan Lirboyo, Kecamatan MojorotoKota Kediri, Jawa Timur64117Koordinat7°49′05″S 111°59′25″E / 7.818048202980707°S 111.99037166686124°E / -7.818048202980707; 111.99037166686124Koordinat: 7°49′05″S 111°59′25″E / 7.818048202980707°S 111.99037166686124°E / -7.818048202980707; 111.99037166686124Telepon/Faks.0354 773608 0354 7417885 081292272019Situs weblirboyo.netInformasiJenisPondok pesa...