Conformal map

A rectangular grid (top) and its image under a conformal map (bottom). It is seen that maps pairs of lines intersecting at 90° to pairs of curves still intersecting at 90°.

In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.

More formally, let and be open subsets of . A function is called conformal (or angle-preserving) at a point if it preserves angles between directed curves through , as well as preserving orientation. Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or curvature.

The conformal property may be described in terms of the Jacobian derivative matrix of a coordinate transformation. The transformation is conformal whenever the Jacobian at each point is a positive scalar times a rotation matrix (orthogonal with determinant one). Some authors define conformality to include orientation-reversing mappings whose Jacobians can be written as any scalar times any orthogonal matrix.[1]

For mappings in two dimensions, the (orientation-preserving) conformal mappings are precisely the locally invertible complex analytic functions. In three and higher dimensions, Liouville's theorem sharply limits the conformal mappings to a few types.

The notion of conformality generalizes in a natural way to maps between Riemannian or semi-Riemannian manifolds.

In two dimensions

If is an open subset of the complex plane , then a function is conformal if and only if it is holomorphic and its derivative is everywhere non-zero on . If is antiholomorphic (conjugate to a holomorphic function), it preserves angles but reverses their orientation.

In the literature, there is another definition of conformal: a mapping which is one-to-one and holomorphic on an open set in the plane. The open mapping theorem forces the inverse function (defined on the image of ) to be holomorphic. Thus, under this definition, a map is conformal if and only if it is biholomorphic. The two definitions for conformal maps are not equivalent. Being one-to-one and holomorphic implies having a non-zero derivative. In fact, we have the following relation, the inverse function theorem:

where . However, the exponential function is a holomorphic function with a nonzero derivative, but is not one-to-one since it is periodic.[2]

The Riemann mapping theorem, one of the profound results of complex analysis, states that any non-empty open simply connected proper subset of admits a bijective conformal map to the open unit disk in . Informally, this means that any blob can be transformed into a perfect circle by some conformal map.

Global conformal maps on the Riemann sphere

A map of the Riemann sphere onto itself is conformal if and only if it is a Möbius transformation.

The complex conjugate of a Möbius transformation preserves angles, but reverses the orientation. For example, circle inversions.

Conformality with respect to three types of angles

In plane geometry there are three types of angles that may be preserved in a conformal map.[3] Each is hosted by its own real algebra, ordinary complex numbers, split-complex numbers, and dual numbers. The conformal maps are described by linear fractional transformations in each case.[4]

In three or more dimensions

Riemannian geometry

In Riemannian geometry, two Riemannian metrics and on a smooth manifold are called conformally equivalent if for some positive function on . The function is called the conformal factor.

A diffeomorphism between two Riemannian manifolds is called a conformal map if the pulled back metric is conformally equivalent to the original one. For example, stereographic projection of a sphere onto the plane augmented with a point at infinity is a conformal map.

One can also define a conformal structure on a smooth manifold, as a class of conformally equivalent Riemannian metrics.

Euclidean space

A classical theorem of Joseph Liouville shows that there are far fewer conformal maps in higher dimensions than in two dimensions. Any conformal map from an open subset of Euclidean space into the same Euclidean space of dimension three or greater can be composed from three types of transformations: a homothety, an isometry, and a special conformal transformation. For linear transformations, a conformal map may only be composed of homothety and isometry, and is called a conformal linear transformation.

Applications

Applications of conformal mapping exist in aerospace engineering,[5] in biomedical sciences[6] (including brain mapping[7] and genetic mapping[8][9][10]), in applied math (for geodesics[11] and in geometry[12]), in earth sciences (including geophysics,[13] geography,[14] and cartography),[15] in engineering,[16][17] and in electronics.[18]

Cartography

In cartography, several named map projections, including the Mercator projection and the stereographic projection are conformal. The preservation of compass directions makes them useful in marine navigation.

Physics and engineering

Conformal mappings are invaluable for solving problems in engineering and physics that can be expressed in terms of functions of a complex variable yet exhibit inconvenient geometries. By choosing an appropriate mapping, the analyst can transform the inconvenient geometry into a much more convenient one. For example, one may wish to calculate the electric field, , arising from a point charge located near the corner of two conducting planes separated by a certain angle (where is the complex coordinate of a point in 2-space). This problem per se is quite clumsy to solve in closed form. However, by employing a very simple conformal mapping, the inconvenient angle is mapped to one of precisely radians, meaning that the corner of two planes is transformed to a straight line. In this new domain, the problem (that of calculating the electric field impressed by a point charge located near a conducting wall) is quite easy to solve. The solution is obtained in this domain, , and then mapped back to the original domain by noting that was obtained as a function (viz., the composition of and ) of , whence can be viewed as , which is a function of , the original coordinate basis. Note that this application is not a contradiction to the fact that conformal mappings preserve angles, they do so only for points in the interior of their domain, and not at the boundary. Another example is the application of conformal mapping technique for solving the boundary value problem of liquid sloshing in tanks.[19]

If a function is harmonic (that is, it satisfies Laplace's equation ) over a plane domain (which is two-dimensional), and is transformed via a conformal map to another plane domain, the transformation is also harmonic. For this reason, any function which is defined by a potential can be transformed by a conformal map and still remain governed by a potential. Examples in physics of equations defined by a potential include the electromagnetic field, the gravitational field, and, in fluid dynamics, potential flow, which is an approximation to fluid flow assuming constant density, zero viscosity, and irrotational flow. One example of a fluid dynamic application of a conformal map is the Joukowsky transform that can be used to examine the field of flow around a Joukowsky airfoil.

Conformal maps are also valuable in solving nonlinear partial differential equations in some specific geometries. Such analytic solutions provide a useful check on the accuracy of numerical simulations of the governing equation. For example, in the case of very viscous free-surface flow around a semi-infinite wall, the domain can be mapped to a half-plane in which the solution is one-dimensional and straightforward to calculate.[20]

For discrete systems, Noury and Yang presented a way to convert discrete systems root locus into continuous root locus through a well-know conformal mapping in geometry (aka inversion mapping).[21]

Maxwell's equations

Maxwell's equations are preserved by Lorentz transformations which form a group including circular and hyperbolic rotations. The latter are sometimes called Lorentz boosts to distinguish them from circular rotations. All these transformations are conformal since hyperbolic rotations preserve hyperbolic angle, (called rapidity) and the other rotations preserve circular angle. The introduction of translations in the Poincaré group again preserves angles.

A larger group of conformal maps for relating solutions of Maxwell's equations was identified by Ebenezer Cunningham (1908) and Harry Bateman (1910). Their training at Cambridge University had given them facility with the method of image charges and associated methods of images for spheres and inversion. As recounted by Andrew Warwick (2003) Masters of Theory: [22]

Each four-dimensional solution could be inverted in a four-dimensional hyper-sphere of pseudo-radius in order to produce a new solution.

Warwick highlights this "new theorem of relativity" as a Cambridge response to Einstein, and as founded on exercises using the method of inversion, such as found in James Hopwood Jeans textbook Mathematical Theory of Electricity and Magnetism.

General relativity

In general relativity, conformal maps are the simplest and thus most common type of causal transformations. Physically, these describe different universes in which all the same events and interactions are still (causally) possible, but a new additional force is necessary to affect this (that is, replication of all the same trajectories would necessitate departures from geodesic motion because the metric tensor is different). It is often used to try to make models amenable to extension beyond curvature singularities, for example to permit description of the universe even before the Big Bang.

See also

References

  1. ^ Blair, David (2000-08-17). Inversion Theory and Conformal Mapping. The Student Mathematical Library. Vol. 9. Providence, Rhode Island: American Mathematical Society. doi:10.1090/stml/009. ISBN 978-0-8218-2636-2. S2CID 118752074.
  2. ^ Richard M. Timoney (2004), Riemann mapping theorem from Trinity College Dublin
  3. ^ Geometry/Unified Angles at Wikibooks
  4. ^ Tsurusaburo Takasu (1941) Gemeinsame Behandlungsweise der elliptischen konformen, hyperbolischen konformen und parabolischen konformen Differentialgeometrie, 2, Proceedings of the Imperial Academy 17(8): 330–8, link from Project Euclid, MR14282
  5. ^ Selig, Michael S.; Maughmer, Mark D. (1992-05-01). "Multipoint inverse airfoil design method based on conformal mapping". AIAA Journal. 30 (5): 1162–1170. Bibcode:1992AIAAJ..30.1162S. doi:10.2514/3.11046. ISSN 0001-1452.
  6. ^ Cortijo, Vanessa; Alonso, Elena R.; Mata, Santiago; Alonso, José L. (2018-01-18). "Conformational Map of Phenolic Acids". The Journal of Physical Chemistry A. 122 (2): 646–651. Bibcode:2018JPCA..122..646C. doi:10.1021/acs.jpca.7b08882. ISSN 1520-5215. PMID 29215883.
  7. ^ "Properties of Conformal Mapping".
  8. ^ "7.1 GENETIC MAPS COME IN VARIOUS FORMS". www.informatics.jax.org. Retrieved 2022-08-22.
  9. ^ Alim, Karen; Armon, Shahaf; Shraiman, Boris I.; Boudaoud, Arezki (2016). "Leaf growth is conformal". Physical Biology. 13 (5): 05LT01. arXiv:1611.07032. Bibcode:2016PhBio..13eLT01A. doi:10.1088/1478-3975/13/5/05lt01. PMID 27597439. S2CID 9351765. Retrieved 2022-08-22.
  10. ^ González-Matesanz, F. J.; Malpica, J. A. (2006-11-01). "Quasi-conformal mapping with genetic algorithms applied to coordinate transformations". Computers & Geosciences. 32 (9): 1432–1441. Bibcode:2006CG.....32.1432G. doi:10.1016/j.cageo.2006.01.002. ISSN 0098-3004.
  11. ^ Berezovski, Volodymyr; Cherevko, Yevhen; Rýparová, Lenka (August 2019). "Conformal and Geodesic Mappings onto Some Special Spaces". Mathematics. 7 (8): 664. doi:10.3390/math7080664. hdl:11012/188984. ISSN 2227-7390.
  12. ^ Gronwall, T. H. (June 1920). "Conformal Mapping of a Family of Real Conics on Another". Proceedings of the National Academy of Sciences. 6 (6): 312–315. Bibcode:1920PNAS....6..312G. doi:10.1073/pnas.6.6.312. ISSN 0027-8424. PMC 1084530. PMID 16576504.
  13. ^ "Mapping in a sentence (esp. good sentence like quote, proverb...)". sentencedict.com. Retrieved 2022-08-22.
  14. ^ "EAP - Proceedings of the Estonian Academy of Sciences – Publications". Retrieved 2022-08-22.
  15. ^ López-Vázquez, Carlos (2012-01-01). "Positional Accuracy Improvement Using Empirical Analytical Functions". Cartography and Geographic Information Science. 39 (3): 133–139. Bibcode:2012CGISc..39..133L. doi:10.1559/15230406393133. ISSN 1523-0406. S2CID 123894885.
  16. ^ Calixto, Wesley Pacheco; Alvarenga, Bernardo; da Mota, Jesus Carlos; Brito, Leonardo da Cunha; Wu, Marcel; Alves, Aylton José; Neto, Luciano Martins; Antunes, Carlos F. R. Lemos (2011-02-15). "Electromagnetic Problems Solving by Conformal Mapping: A Mathematical Operator for Optimization". Mathematical Problems in Engineering. 2010: e742039. doi:10.1155/2010/742039. hdl:10316/110197. ISSN 1024-123X.
  17. ^ Leonhardt, Ulf (2006-06-23). "Optical Conformal Mapping". Science. 312 (5781): 1777–1780. Bibcode:2006Sci...312.1777L. doi:10.1126/science.1126493. ISSN 0036-8075. PMID 16728596. S2CID 8334444.
  18. ^ Singh, Arun K.; Auton, Gregory; Hill, Ernie; Song, Aimin (2018-07-01). "Estimation of intrinsic and extrinsic capacitances of graphene self-switching diode using conformal mapping technique". 2D Materials. 5 (3): 035023. Bibcode:2018TDM.....5c5023S. doi:10.1088/2053-1583/aac133. ISSN 2053-1583. S2CID 117531045.
  19. ^ Kolaei, Amir; Rakheja, Subhash; Richard, Marc J. (2014-01-06). "Range of applicability of the linear fluid slosh theory for predicting transient lateral slosh and roll stability of tank vehicles". Journal of Sound and Vibration. 333 (1): 263–282. Bibcode:2014JSV...333..263K. doi:10.1016/j.jsv.2013.09.002.
  20. ^ Hinton, Edward; Hogg, Andrew; Huppert, Herbert (2020). "Shallow free-surface Stokes flow around a corner". Philosophical Transactions of the Royal Society A. 378 (2174). Bibcode:2020RSPTA.37890515H. doi:10.1098/rsta.2019.0515. PMC 7287310. PMID 32507085.
  21. ^ Noury, Keyvan; Yang, Bingen (2020). "A Pseudo S-plane Mapping of Z-plane Root Locus". ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers. doi:10.1115/IMECE2020-23096. ISBN 978-0-7918-8454-6. S2CID 234582511.
  22. ^ Warwick, Andrew (2003). Masters of theory : Cambridge and the rise of mathematical physics. University of Chicago Press. pp. 404–424. ISBN 978-0226873756.

Further reading

Read other articles:

Provinsi Ise (伊勢国code: ja is deprecated , ise no kuni) atau dikenal sebagai Seishu (勢州code: ja is deprecated , seishū) adalah nama provinsi lama Jepang yang menempati hampir seluruh wilayah prefektur Mie sekarang. Ise berbatasan dengan provinsi Iga, Kii, Mino, Omi, Owari, Shima, dan provinsi Yamato. Ibu kota berada di Suzuka. Kota istana yang terbesar adalah kota yang sekarang dikenal sebagai Tsu, walaupun ada juga kota sekeliling istana yang berkembang di tempat-tempat yang memil...

 

 

I Do Not Hook UpSingel oleh Kelly Clarksondari album All I Ever WantedDirilis31 Maret 2009 (2009-03-31)Direkam2008GenreDance-rockpower popDurasi3:20LabelRCAPenciptaKara DioGuardiGreg WellsKaty PerryProduserHoward BensonKronologi singel Kelly Clarkson My Life Would Suck Without You (2009) I Do Not Hook Up (2009) Already Gone (2009) Video musikI Do Not Hook Up di YouTube I Do Not Hook Up adalah lagu yang direkam oleh penyanyi asal Amerika Serikat Kelly Clarkson untuk album studio keempatny...

 

 

Anna Q. NilssonNilsson, c. 1920LahirAnna Quirentia Nilsson(1888-03-30)30 Maret 1888Ystad, SwediaMeninggal11 Februari 1974(1974-02-11) (umur 85)Sun City, California, A.S.PekerjaanAktrisTahun aktif1911–1954Suami/istriGuy Coombs ​ ​(m. 1916; c. 1917)​ J. Marshall Gunnerson ​ ​(m. 1922; c. 1925)​ Anna Quirentia Nilsson (30 Maret 1888 – 11 Februari 1974) adalah seorang aktri...

Voce principale: Promozione 1969-1970. Promozione Lombardia 1969-1970 Competizione Promozione Sport Calcio Edizione 14ª Organizzatore FIGC - LNDComitato Regionale Lombardo Luogo  Italia Cronologia della competizione 1968-1969 1970-1971 Manuale Nella stagione 1969-1970 la Promozione era il quinto livello del calcio italiano (il massimo livello regionale). Qui vi sono le statistiche relative al campionato in Lombardia. Il campionato di Promozione Lombarda 1969-70 è stato il 14º campion...

 

 

Untuk kegunaan lain, lihat Sumatra (disambiguasi). SumatraNama lokal: سومترا (Jawi)Topografi Pulau SumatraPulau Sumatra di IndonesiaGeografiLokasiAsia TenggaraKoordinat0°00′N 102°00′E / 0.000°N 102.000°E / 0.000; 102.000KepulauanKepulauan Sunda BesarLuas473.481 km2Peringkat luaske-6Titik tertinggiGunung Kerinci (3.805 m)PemerintahanNegara IndonesiaProvinsi Aceh Sumatera Utara Sumatera Barat Riau Jambi ...

 

 

John NewlandsLahir26 November 1837 (1837-11-26)Lambeth, Surrey, Inggris,Britania RayaMeninggal29 Juli 1898 (1898-07-28UTC16) (aged 60)Lower Clapton, Middlesex, Inggris, Britania RayaKebangsaanInggrisWarga negaraBritaniaAlmamaterRoyal College of ChemistryDikenal atasTabel periodik, hukum oktafPenghargaanDavy Medal (1887)Karier ilmiahBidangKimia analisis Tempat lahir Newlands di West Square, Lambeth. John Alexander Reina Newlands (26 November 1837 – 29 Juli 1898) adalah seoran...

Questa voce o sezione sull'argomento centri abitati della Spagna non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Pedrafita do Cebreirocomune Pedrafita do Cebreiro – Veduta LocalizzazioneStato Spagna Comunità autonoma Galizia Provincia Lugo TerritorioCoordinate42°44′N 7°01′W /...

 

 

Kementerian Pendidikan, Kebudayaan, dan Ilmu PengetahuanMinisterie van Onderwijs, Cultuur en WetenschapLambang BelandaKementerian Pendidikan, Budaya dan Ilmu PengetahuanInformasi KementerianDibentuk9 September 1918; 105 tahun lalu (1918-09-09)Wilayah hukumKerajaan BelandaKantor pusatRijnstraat 50, Den Haag, BelandaAnggaran tahunan€31,4 miliar (2013)[1]MenteriRobbert Dijkgraaf, Menteri Pendidikan, Kebudayaan, dan Ilmu PengetahuanMariëlle Paul, MenteriWakil Menterilowong, Sekret...

 

 

American public health advocate (1862–1954) This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Family section is significantly too long for encyclopedic purposes. Please help improve this article if you can. (August 2022) (Learn how and when to remove this message) Newspaper photo of Dr. Crumbine, published in 1921 Brick - Don't Spit on the Sidewalk in the collection of the National Museum of Health and Medicine Samuel Jay Crumbine (September 17...

Manuscript fragments from 32BC–640AD found in an Egyptian rubbish dump Grenfell (left) and Hunt (right) in about 1896 Oxyrhynchusclass=notpageimage| Site where the Oxyrhynchus Papyri were discovered Excavations at Oxyrhynchus 1, c. 1903. The Oxyrhynchus Papyri are a group of manuscripts discovered during the late nineteenth and early twentieth centuries by papyrologists Bernard Pyne Grenfell and Arthur Surridge Hunt at an ancient rubbish dump near Oxyrhynchus in Egypt (28°32′N 30°...

 

 

Komando Distrik Militer 0813/BojonegoroNegara IndonesiaAliansiKorem 082/CPYJCabang TNI Angkatan DaratTipe unitKodimPeranSatuan TeritorialBagian dariKodam V/BrawijayaMakodimBojonegoroPelindungTentara Nasional IndonesiaBaret H I J A U Situs webwww.kodim0813bojonegoro.mil.id KOMANDO DISTRIK MILITER 0813 BOJONEGORO atau Kodim 0813/Bojonegoro adalah Kodim yang berada di bawah Korem 082/Citra Panca Yudha Jaya. Markas Kodim 0813/Bojonegoro terletak di Jalan Hos Cokroaminoto, Bojonegor...

 

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Moldavian-Muntenian Carpathians – news · newspapers · books · scholar · JSTOR (August 2021) (Learn how and when to remove this message) Moldavian-Muntenian Carpathians, marked in red and labeled with D See also: Romanian Carpathians The Moldavian-Muntenian Carpathians are a grou...

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

 

The State Intelligence Agency (SIA) (Bulgarian: Държавна агенция Разузнаване, romanized: Dǎržavna Agencija Razuznavane) is a Bulgarian foreign intelligence service, which obtains, processes, analyzes and provides the state leadership with intelligence, assessments, analyses and prognoses, related to the national security, interests and priorities of the Republic of Bulgaria.[1] Seal of The State Intelligence Agency History The history of intelligence a...

 

 

Disambiguazione – Se stai cercando l'omonimo videogioco, vedi Dragster (videogioco). Un dragster della Caterpillar Il dragster è un tipo di veicolo da competizione utilizzato per gare di accelerazione. Ha un motore scoperto nel quale il carburante viene iniettato nei cilindri tramite iniezione meccanica continua, ed è dotato di singola o doppia accensione, a seconda della classe.[1] Indice 1 Descrizione 2 Note 3 Voci correlate 4 Altri progetti 5 Collegamenti esterni Descrizione L...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目没有列出任何参考或来源。 (2010年12月8日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 此條目需要擴充。 (2010年12月8日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此�...

 

 

Avianca Penerbangan 052Puing-puing dari pesawat tersebut di sisi bukit Cove NeckRingkasan kecelakaanTanggal25 Januari 1990RingkasanKehabisan bahan bakarLokasiCove Neck, New York, Amerika Serikat 40°52′48″N 073°29′43″W / 40.88000°N 73.49528°W / 40.88000; -73.49528Penumpang149Awak9Cedera85Tewas73Selamat85Jenis pesawatBoeing 707-321BOperatorAviancaRegistrasiHK-2016AsalBandar Udara Internasional El DoradoPerhentianBandar Udara José María Córdova Int'lTu...

 

 

1989 film by R. Sundarrajan Rajadhi RajaTheatrical release posterDirected byR. SundarrajanScreenplay byPanchu ArunachalamStory byR. SundarrajanProduced byR. D. BhaskarStarringRajinikanthNadhiyaRadhaCinematographyRajarajanEdited byB. LeninV. T. VijayanMusic byIlaiyaraajaProductioncompanyPavalar CreationsRelease date 4 March 1989 (1989-03-04) CountryIndiaLanguageTamil Rajadhi Raja (transl. Superior King) is a 1989 Indian Tamil-language masala film directed by R. Sundarrajan...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2021) أسماء جميل رشيد معلومات شخصية مواطنة عراقية الحياة العملية المدرسة الأم جامعة بغداد المهنة أستاذة جامعية اللغات العربية بوابة الأدب تعديل مصدري - تعديل  ...

 

 

Chairman of Taiwan Statebuilding Party Wang Hsing-huan王興煥2nd Chairperson of the Taiwan Statebuilding PartyIncumbentAssumed office 17 January 2023Preceded byChen Yi-chi2nd Secretary-General of the Taiwan Statebuilding PartyIn office25 March 2020 – 17 January 2023Preceded byChen Hsin-yu [zh]Succeeded byVacant Personal detailsPolitical partyTaiwan Statebuilding Party Wang Hsing-huan (Chinese and Taiwanese: 王興煥, Pe̍h-ōe-jī: Ông Heng-hoàn) is a Taiwanes...