Borel subgroup

In the theory of algebraic groups, a Borel subgroup of an algebraic group G is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group GLn (n x n invertible matrices), the subgroup of invertible upper triangular matrices is a Borel subgroup.

For groups realized over algebraically closed fields, there is a single conjugacy class of Borel subgroups.

Borel subgroups are one of the two key ingredients in understanding the structure of simple (more generally, reductive) algebraic groups, in Jacques Tits' theory of groups with a (B, N) pair. Here the group B is a Borel subgroup and N is the normalizer of a maximal torus contained in B.

The notion was introduced by Armand Borel, who played a leading role in the development of the theory of algebraic groups.

Parabolic subgroups

Subgroups between a Borel subgroup B and the ambient group G are called parabolic subgroups. Parabolic subgroups P are also characterized, among algebraic subgroups, by the condition that G/P is a complete variety. Working over algebraically closed fields, the Borel subgroups turn out to be the minimal parabolic subgroups in this sense. Thus B is a Borel subgroup when the homogeneous space G/B is a complete variety which is "as large as possible".

For a simple algebraic group G, the set of conjugacy classes of parabolic subgroups is in bijection with the set of all subsets of nodes of the corresponding Dynkin diagram; the Borel subgroup corresponds to the empty set and G itself corresponding to the set of all nodes. (In general, each node of the Dynkin diagram determines a simple negative root and thus a one-dimensional 'root group' of G. A subset of the nodes thus yields a parabolic subgroup, generated by B and the corresponding negative root groups. Moreover, any parabolic subgroup is conjugate to such a parabolic subgroup.) The corresponding subgroups of the Weyl group of G are also called parabolic subgroups, see Parabolic subgroup of a reflection group.

Example

Let . A Borel subgroup of is the set of upper triangular matrices

and the maximal proper parabolic subgroups of containing are

Also, a maximal torus in is

This is isomorphic to the algebraic torus .[1]

Lie algebra

For the special case of a Lie algebra with a Cartan subalgebra , given an ordering of , the Borel subalgebra is the direct sum of and the weight spaces of with positive weight. A Lie subalgebra of containing a Borel subalgebra is called a parabolic Lie algebra.

See also

References

  • A. Borel (2001). Essays in the History of Lie Groups and Algebraic Groups. Providence RI: AMS. ISBN 0-8218-0288-7.
  • J. Humphreys (1972). Linear Algebraic Groups. New York: Springer. ISBN 0-387-90108-6.
  • Milne, J. S. (2017), Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field, Cambridge University Press, doi:10.1017/9781316711736, ISBN 978-1107167483, MR 3729270
  • Gary Seitz (1991). "Algebraic Groups". In B. Hartley; et al. (eds.). Finite and Locally Finite Groups. pp. 45–70.
Specific

Read other articles:

Ali Mukhni Bupati Padang Pariaman ke-19Masa jabatan17 Februari 2016 – 17 Februari 2021WakilSuhatri Bur PendahuluRosnini Savitri (Pj.)PenggantiJonpriadi (Plh.)Suhatri BurMasa jabatan25 Oktober 2010 – 25 Oktober 2015WakilDamsuar PendahuluFebri Erizon (Pj.)PenggantiJonpriadi (Plh.)Wakil Bupati Padang Pariaman ke-2Masa jabatan5 September 2005 – 5 September 2010BupatiMuslim Kasim PendahuluMartias MahyuddinPenggantiDamsuar Informasi pribadiLahir(1956-09-16)1...

 

Pangkajene dan Kepulauan pada Pekan Olahraga Provinsi Sulawesi Selatan 2022 Ketua kontingen Letkol Inf. Hengky Vantriardo, S.E., M.M., M.Han. (Komandan Kodim 1421/Pangkep) Warna kebanggaan  BIRU TUA  Peringkat sebelumnya 2 dari 24 kontingen Cabang olahraga inti yang diikuti 28 Jumlah atlet TBD Total medali Emas30 Perak42 Perunggu50 122 (Urutan ke-2 ) Kontingen Pangkajene dan Kepulauan berkompetisi pada Pekan Olahraga Provinsi Sulawesi Selatan 2022 di Sinjai dan Bulukumba, Sula...

 

Israeli activist (1931–2021) Ida NudelNudel and her dog arrive on a private plane, owned by Armand Hammer, at Ben-Gurion AirportBorn(1931-04-27)27 April 1931Novorossiysk, Azov-Black Sea Krai, Russian SFSR, Soviet UnionDied14 September 2021(2021-09-14) (aged 90)Rehovot, IsraelNationalityIsraeliCitizenshipIsraeliEducationEconomicOccupationEconomistOrganizationMother to mother אם-לאםKnown forRefusenik and an Israeli activistRelativesElena Ilana Fridman (sister), Lev Arie Fridma...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Kemeja batik Kaus oblong Baju adalah istilah untuk pakaian yang digunakan untuk menutupi badan, terutama badan bagian atas.[1] Bagian yang ditutupi dapat bermacam-macam tergantung jenis bajunya. Meskipun istilah baju umumnya digunakan pada pakaian yang dikenakan pada badan bagian atas, terutama bagian batang tubuh dan lengan di antara leher dan pinggang, istilah tersebut juga dapat merujuk pada pakaian yang menutupi seluruh badan dari leher hingga kaki yang sering disebut terusan, mis...

 

For other uses, see Bara. Census Town in West Bengal, IndiaBaraCensus TownBaraLocation in West Bengal, IndiaShow map of West BengalBaraBara (India)Show map of IndiaCoordinates: 22°54′55″N 88°46′20″E / 22.915231°N 88.772246°E / 22.915231; 88.772246Country IndiaStateWest BengalDistrictNorth 24 ParganasArea • Total1.736 km2 (0.670 sq mi)Elevation10 m (30 ft)Population (2011) • Total5,172 • ...

Javier Zanetti Javier Zanetti, Kapten Inter MilanInformasi pribadiNama lengkap Javier Adelmar ZanettiTanggal lahir 10 Agustus 1973 (umur 50)Tempat lahir Buenos Aires, ArgentinaTinggi 178 m (584 ft 0 in)[1]Posisi bermain Bek, gelandang bertahanKarier junior1982–1989 Independiente1991–1992 TalleresKarier senior*Tahun Tim Tampil (Gol)1992–1993 Talleres 33 (1)1993–1995 Banfield 66 (4)1995–2014 Inter Milan 615 (12)Total 714 (17)Tim nasional1996 Argentina U-23...

 

Artikel ini menggunakan kata-kata yang berlebihan dan hiperbolis tanpa memberikan informasi yang jelas. Silakan buang istilah-istilah yang hiperbolis tersebut. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artha Graha NetworkJenisKelompok usahaIndustriKonglomeratDidirikan1989; 35 tahun lalu (1989)PendiriTomy WinataYayasan Kartika Eka PaksiKantorpusatGedung Artha Graha Lt. 10Jl. Jend. Sudirman Kav. 52-53Jakarta, IndonesiaTokohkunciTomy WinataKiki SyahnakriSugianto Ku...

 

乔冠华 中华人民共和国外交部部长 中国人民对外友好协会顾问 任期1974年11月—1976年12月总理周恩来 → 华国锋前任姬鹏飞继任黄华 个人资料性别男出生(1913-03-28)1913年3月28日 中華民國江蘇省盐城县逝世1983年9月22日(1983歲—09—22)(70歲) 中华人民共和国北京市籍贯江蘇鹽城国籍 中华人民共和国政党 中国共产党配偶明仁(1940年病逝) 龚澎(1970年病逝) 章含�...

For related races, see 2020 United States gubernatorial elections. 2020 Vermont gubernatorial election ← 2018 November 3, 2020 2022 →   Nominee Phil Scott David Zuckerman Party Republican Progressive Alliance Democratic Popular vote 248,412 99,214 Percentage 68.49% 27.35% County results Municipality results Precinct resultsScott:      40–50%      50–60%      60–70%   ...

 

HaryatmokoInformasi pribadiNama lahirHaryatmokoLahir9 Maret 1959 (umur 65)Sleman[1]KewarganegaraanIndonesia R.P. Dr. Johanes Haryatmoko, SJ (lahir 9 Maret 1959) adalah seorang pastor Katolik dan dosen di beberapa universitas terkemuka di Indonesia. Di samping sebagai dosen tetap Universitas Sanata Dharma (Yogayakarta), Haryatmoko adalah pengajar tamu di pasca-sarjana Universitas Indonesia (Jakarta), Universitas Gadjah Mada (Yogyakarta) dan Universitas Islam Negeri Sunan Kalijaga ...

 

Queen's Park reached two FA Cup finals, the only Scottish team ever to do so. The Football Association Challenge Cup, commonly known as the FA Cup, is a knockout competition in English association football. It is the oldest football competition in the world, having commenced in 1871.[1] The Cup is organised by The Football Association, the governing body of the sport in England, and is open only to clubs playing in FA-affiliated leagues in the modern era, all of which are based in En...

1987 Egyptian parliamentary election ← 1984 6 and 13 April 1987 1990 → All 458 seats to the People's Assembly of Egypt 230 seats were needed for a majority   First party Second party   Leader Atef Sedki Ibrahim Shoukry Party NDP IA Seats won 346 60 Popular vote 4,751,758 1,163,525 Percentage 69.62% 17.05% Prime Minister before election Atef Sedki National Democratic Party Subsequent Prime Minister Atef Sedki National Democratic Party Early parliamenta...

 

This article is part of a series on theHistory of the United StatesHighway workers in El Cerrito, New Mexico; 1941. Timeline and periodsPrehistoric and Pre-Columbian Erauntil 1607Colonial Era 1607–17651776–1789    American Revolution 1765–1783    Confederation period 1783–17881789–1815    Federalist Era 1788–1801    Jeffersonian Era1801–18171815–1849    Era of Good Feelings 181...

 

Escles-Saint-PierrecomuneEscles-Saint-Pierre – Veduta LocalizzazioneStato Francia RegioneAlta Francia Dipartimento Oise ArrondissementBeauvais CantoneGrandvilliers TerritorioCoordinate49°45′N 1°48′E49°45′N, 1°48′E (Escles-Saint-Pierre) Superficie3,38 km² Abitanti142[1] (2009) Densità42,01 ab./km² Altre informazioniCod. postale60220 Fuso orarioUTC+1 Codice INSEE60219 CartografiaEscles-Saint-Pierre Modifica dati su Wikidata · Manuale Escles-Saint-P...

Palazzo LancellottiLocalizzazioneStato Italia RegioneLazio LocalitàRoma IndirizzoVia Lancellotti, 18 - 00186 Roma Coordinate41°54′02.3″N 12°28′14.1″E41°54′02.3″N, 12°28′14.1″E Informazioni generaliCondizioniIn uso Costruzione1591 - 1610 RealizzazioneArchitettoFrancesco da VolterraCarlo Maderno ProprietarioFamiglia Lancellotti Modifica dati su Wikidata · Manuale Palazzo Lancellotti è un palazzo di Roma di proprietà dell'omonima famiglia. Il palazzo è situato ...

 

إدوين بيكون أكونغ معلومات شخصية الميلاد 4 نوفمبر 1940 (84 سنة)  بورت لويس  مواطنة موريشيوس  الحياة العملية المهنة حكم كرة قدم،  ولاعب كرة قدم  الرياضة كرة القدم  تعديل مصدري - تعديل   إدوين سيدني بيكون-أكونغ (بالإنجليزية: Edwin Picon-Ackong)‏ (ولد في 4 تشرين الثاني/نوفمب�...

 

世論では第二次世界大戦後から日本は追従するようになったと思われがちだが、明治時代や大正時代から既にアメリカ合衆国及び大英帝国に追従する国だったと言われていた(これはハワイ併合時(1897年)の風刺画である)。アメリカ合衆国(アンクル・サム)が 「なぜこの奇妙な猟犬(大日本帝国)はどこに行くにも私(アメリカ合衆国)の後を追うの?」、イギリ...

Andean cosmological concept Inca Empire Inca society Army Agriculture Architecture Ayllu Cuisine Education Engineering Mythology Religion Roads Inca history Kingdom of Cusco Inca Empire History of Cusco Chimor–Inca War Invasion of Chile Neo-Inca State Civil War Spanish conquest vteIndigenous chronicler Felipe Guaman Poma de Ayala in his Nueva coronica i buen gobierno (1615, f. 912) uses terms ⟨hanacpacha⟩ hanaq pacha and ⟨ucopacha⟩ ukhu pacha while arguing that pre-Hispanic Andeans ...

 

«EP» redirige aquí. Para otras acepciones, véase EP (desambiguación). No debe confundirse con El EP. EP de Mrs Robinson de Simon & Garfunkel Un EP o epé (extended play), también llamado miniálbum, es una sigla inglesa que traducida al español significa reproducción extendida y se utiliza como denominación para un formato de grabación musical.[1]​ La duración de un EP es muy larga para considerarse como sencillo, y muy corta para considerarse como álbum.[1]​ Los �...