For a distribution of mass or probability on a bounded interval, the collection of all the moments (of all orders, from 0 to ∞) uniquely determines the distribution (Hausdorff moment problem). The same is not true on unbounded intervals (Hamburger moment problem).
In the mid-nineteenth century, Pafnuty Chebyshev became the first person to think systematically in terms of the moments of random variables.[1]
Significance of the moments
The n-th raw moment (i.e., moment about zero) of a random variable with density function is defined by[2]The n-th moment of a real-valued continuous random variable with density function about a value is the integral
It is possible to define moments for random variables in a more general fashion than moments for real-valued functions — see moments in metric spaces. The moment of a function, without further explanation, usually refers to the above expression with .
For the second and higher moments, the central moment (moments about the mean, with c being the mean) are usually used rather than the moments about zero, because they provide clearer information about the distribution's shape.
Other moments may also be defined. For example, the nth inverse moment about zero is and the n-th logarithmic moment about zero is
The n-th moment about zero of a probability density function is the expected value of and is called a raw moment or crude moment.[3] The moments about its mean are called central moments; these describe the shape of the function, independently of translation.
The normalisedn-th central moment or standardised moment is the n-th central moment divided by σn; the normalised n-th central moment of the random variable X is
These normalised central moments are dimensionless quantities, which represent the distribution independently of any linear change of scale.
The third central moment is the measure of the lopsidedness of the distribution; any symmetric distribution will have a third central moment, if defined, of zero. The normalised third central moment is called the skewness, often γ. A distribution that is skewed to the left (the tail of the distribution is longer on the left) will have a negative skewness. A distribution that is skewed to the right (the tail of the distribution is longer on the right), will have a positive skewness.
For distributions that are not too different from the normal distribution, the median will be somewhere near μ − γσ/6; the mode about μ − γσ/2.
The fourth central moment is a measure of the heaviness of the tail of the distribution. Since it is the expectation of a fourth power, the fourth central moment, where defined, is always nonnegative; and except for a point distribution, it is always strictly positive. The fourth central moment of a normal distribution is 3σ4.
The kurtosisκ is defined to be the standardized fourth central moment. (Equivalently, as in the next section, excess kurtosis is the fourth cumulant divided by the square of the second cumulant.)[4][5] If a distribution has heavy tails, the kurtosis will be high (sometimes called leptokurtic); conversely, light-tailed distributions (for example, bounded distributions such as the uniform) have low kurtosis (sometimes called platykurtic).
The kurtosis can be positive without limit, but κ must be greater than or equal to γ2 + 1; equality only holds for binary distributions. For unbounded skew distributions not too far from normal, κ tends to be somewhere in the area of γ2 and 2γ2.
The inequality can be proven by consideringwhere T = (X − μ)/σ. This is the expectation of a square, so it is non-negative for all a; however it is also a quadratic polynomial in a. Its discriminant must be non-positive, which gives the required relationship.
Higher moments
High-order moments are moments beyond 4th-order moments.
As with variance, skewness, and kurtosis, these are higher-order statistics, involving non-linear combinations of the data, and can be used for description or estimation of further shape parameters. The higher the moment, the harder it is to estimate, in the sense that larger samples are required in order to obtain estimates of similar quality. This is due to the excess degrees of freedom consumed by the higher orders. Further, they can be subtle to interpret, often being most easily understood in terms of lower order moments – compare the higher-order derivatives of jerk and jounce in physics. For example, just as the 4th-order moment (kurtosis) can be interpreted as "relative importance of tails as compared to shoulders in contribution to dispersion" (for a given amount of dispersion, higher kurtosis corresponds to thicker tails, while lower kurtosis corresponds to broader shoulders), the 5th-order moment can be interpreted as measuring "relative importance of tails as compared to center (mode and shoulders) in contribution to skewness" (for a given amount of skewness, higher 5th moment corresponds to higher skewness in the tail portions and little skewness of mode, while lower 5th moment corresponds to more skewness in shoulders).
Mixed moments
Mixed moments are moments involving multiple variables.
The value is called the moment of order (moments are also defined for non-integral ). The moments of the joint distribution of random variables are defined similarly. For any integers , the mathematical expectation is called a mixed moment of order (where ), and is called a central mixed moment of order . The mixed moment is called the covariance and is one of the basic characteristics of dependency between random variables.
Some examples are covariance, coskewness and cokurtosis. While there is a unique covariance, there are multiple co-skewnesses and co-kurtoses.
Properties of moments
Transformation of center
Since
where is the binomial coefficient, it follows that the moments about b can be calculated from the moments about a by:
The raw moment of a convolution reads
where denotes the -th moment of the function given in the brackets. This identity follows by the convolution theorem for moment generating function and applying the chain rule for differentiating a product.
The first raw moment and the second and third unnormalized central moments are additive in the sense that if X and Y are independent random variables then
(These can also hold for variables that satisfy weaker conditions than independence. The first always holds; if the second holds, the variables are called uncorrelated).
In fact, these are the first three cumulants and all cumulants share this additivity property.
Sample moments
For all k, the k-th raw moment of a population can be estimated using the k-th raw sample moment
applied to a sample X1, ..., Xn drawn from the population.
It can be shown that the expected value of the raw sample moment is equal to the k-th raw moment of the population, if that moment exists, for any sample size n. It is thus an unbiased estimator. This contrasts with the situation for central moments, whose computation uses up a degree of freedom by using the sample mean. So for example an unbiased estimate of the population variance (the second central moment) is given by
in which the previous denominator n has been replaced by the degrees of freedom n − 1, and in which refers to the sample mean. This estimate of the population moment is greater than the unadjusted observed sample moment by a factor of and it is referred to as the "adjusted sample variance" or sometimes simply the "sample variance".
Problems of determining a probability distribution from its sequence of moments are called problem of moments. Such problems were first discussed by P.L. Chebyshev (1874)[6] in connection with research on limit theorems. In order that the probability distribution of a random variable be uniquely defined by its moments it is sufficient, for example, that Carleman's condition be satisfied:
A similar result even holds for moments of random vectors. The problem of moments seeks characterizations of sequences that are sequences of moments of some function f, all moments of which are finite, and for each integer let
where is finite. Then there is a sequence that weakly converges to a distribution function having as its moments. If the moments determine uniquely, then the sequence weakly converges to .
Partial moments
Partial moments are sometimes referred to as "one-sided moments." The n-th order lower and upper partial moments with respect to a reference point r may be expressed as
If the integral function does not converge, the partial moment does not exist.
Partial moments are normalized by being raised to the power 1/n. The upside potential ratio may be expressed as a ratio of a first-order upper partial moment to a normalized second-order lower partial moment.
The p-th central moment of a measure μ on the measurable space (M, B(M)) about a given point x0 ∈ M is defined to be
μ is said to have finite p-th central moment if the p-th central moment of μ about x0 is finite for some x0 ∈ M.
This terminology for measures carries over to random variables in the usual way: if (Ω, Σ, P) is a probability space and X : Ω → M is a random variable, then the p-th central moment of X about x0 ∈ M is defined to be
and X has finite p-th central moment if the p-th central moment of X about x0 is finite for some x0 ∈ M.
^George Mackey (July 1980). "HARMONIC ANALYSIS AS THE EXPLOITATION OF SYMMETRY - A HISTORICAL SURVEY". Bulletin of the American Mathematical Society. New Series. 3 (1): 549.
^Papoulis, A. (1984). Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw Hill. pp. 145–149.