Bernoulli distribution

Bernoulli distribution
Probability mass function
Funzione di densità di una variabile casuale normale

Three examples of Bernoulli distribution:

   and
   and
   and
Parameters


Support
PMF
CDF
Mean
Median
Mode
Variance
MAD
Skewness
Excess kurtosis
Entropy
MGF
CF
PGF
Fisher information

In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli,[1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability . Less formally, it can be thought of as a model for the set of possible outcomes of any single experiment that asks a yes–no question. Such questions lead to outcomes that are Boolean-valued: a single bit whose value is success/yes/true/one with probability p and failure/no/false/zero with probability q. It can be used to represent a (possibly biased) coin toss where 1 and 0 would represent "heads" and "tails", respectively, and p would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and p would be the probability of tails). In particular, unfair coins would have

The Bernoulli distribution is a special case of the binomial distribution where a single trial is conducted (so n would be 1 for such a binomial distribution). It is also a special case of the two-point distribution, for which the possible outcomes need not be 0 and 1. [2]

Properties

If is a random variable with a Bernoulli distribution, then:

The probability mass function of this distribution, over possible outcomes k, is

[3]

This can also be expressed as

or as

The Bernoulli distribution is a special case of the binomial distribution with [4]

The kurtosis goes to infinity for high and low values of but for the two-point distributions including the Bernoulli distribution have a lower excess kurtosis, namely −2, than any other probability distribution.

The Bernoulli distributions for form an exponential family.

The maximum likelihood estimator of based on a random sample is the sample mean.

The probability mass distribution function of a Bernoulli experiment along with its corresponding cumulative distribution function.

Mean

The expected value of a Bernoulli random variable is

This is due to the fact that for a Bernoulli distributed random variable with and we find

[3]

Variance

The variance of a Bernoulli distributed is

We first find

From this follows

[3]

With this result it is easy to prove that, for any Bernoulli distribution, its variance will have a value inside .

Skewness

The skewness is . When we take the standardized Bernoulli distributed random variable we find that this random variable attains with probability and attains with probability . Thus we get

Higher moments and cumulants

The raw moments are all equal due to the fact that and .

The central moment of order is given by

The first six central moments are

The higher central moments can be expressed more compactly in terms of and

The first six cumulants are

Entropy and Fisher's Information

Entropy

Entropy is a measure of uncertainty or randomness in a probability distribution. For a Bernoulli random variable with success probability and failure probability , the entropy is defined as:

The entropy is maximized when , indicating the highest level of uncertainty when both outcomes are equally likely. The entropy is zero when or , where one outcome is certain.

Fisher's Information

Fisher information measures the amount of information that an observable random variable carries about an unknown parameter upon which the probability of depends. For the Bernoulli distribution, the Fisher information with respect to the parameter is given by:

Proof:

  • The Likelihood Function for a Bernoulli random variable is:

This represents the probability of observing given the parameter .

  • The Log-Likelihood Function is:
  • The Score Function (the first derivative of the log-likelihood w.r.t. is:
  • The second derivative of the log-likelihood function is:
  • Fisher information is calculated as the negative expected value of the second derivative of the log-likelihood:

It is maximized when , reflecting maximum uncertainty and thus maximum information about the parameter .

The Bernoulli distribution is simply , also written as

See also

References

  1. ^ Uspensky, James Victor (1937). Introduction to Mathematical Probability. New York: McGraw-Hill. p. 45. OCLC 996937.
  2. ^ Dekking, Frederik; Kraaikamp, Cornelis; Lopuhaä, Hendrik; Meester, Ludolf (9 October 2010). A Modern Introduction to Probability and Statistics (1 ed.). Springer London. pp. 43–48. ISBN 9781849969529.
  3. ^ a b c d Bertsekas, Dimitri P. (2002). Introduction to Probability. Tsitsiklis, John N., Τσιτσικλής, Γιάννης Ν. Belmont, Mass.: Athena Scientific. ISBN 188652940X. OCLC 51441829.
  4. ^ McCullagh, Peter; Nelder, John (1989). Generalized Linear Models, Second Edition. Boca Raton: Chapman and Hall/CRC. Section 4.2.2. ISBN 0-412-31760-5.
  5. ^ Orloff, Jeremy; Bloom, Jonathan. "Conjugate priors: Beta and normal" (PDF). math.mit.edu. Retrieved October 20, 2023.

Further reading

  • Johnson, N. L.; Kotz, S.; Kemp, A. (1993). Univariate Discrete Distributions (2nd ed.). Wiley. ISBN 0-471-54897-9.
  • Peatman, John G. (1963). Introduction to Applied Statistics. New York: Harper & Row. pp. 162–171.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. CovilhãMunisipalitas BenderaLambang kebesaranNegara PortugalRegionCentroSubregionCova da BeiraKomunitas inter.Beiras e Serra da EstrelaDistrikCastelo BrancoParish21Pemerintahan • PresidenVítor Pereira (PS)Luas • Total555,60...

 

 

Special pawn move in chess This article is about the move in chess. For other uses, see En passant (disambiguation). In chess, en passant (French: [ɑ̃ pasɑ̃], lit. in passing) describes the capture by a pawn of an enemy pawn on the same rank and an adjacent file that has just made an initial two-square advance.[2][3] The capturing pawn moves to the square that the enemy pawn passed over, as if the enemy pawn had advanced only one square. The rule ensures that a paw...

 

 

American politician Orland ArmstrongMember of the U.S. House of Representativesfrom Missouri's 6th districtIn officeJanuary 3, 1951 – January 3, 1953Preceded byGeorge H. ChristopherSucceeded byWilliam ColeMember of the Missouri House of RepresentativesIn office1942–1944In office1932–1936 Personal detailsBornOrland Kay Armstrong(1893-10-02)October 2, 1893Willow Springs, Missouri, U.S.DiedApril 15, 1987(1987-04-15) (aged 93)Springfield, Missouri, U.S.Political pa...

Don't ForgetSingel oleh Demi Lovatodari album Don't ForgetDirilis16 Maret 2009 (2009-03-16)Direkam2008StudioWishbone, North Hollywood, CaliforniaGenreGlam rockDurasi3:44LabelHollywoodPencipta Demi Lovato Joe Jonas Nick Jonas Kevin Jonas Produser John Fields Jonas Brothers Kronologi singel Demi Lovato La La Land (2008) Don't Forget (2009) Here We Go Again (2009) Video musikDon't Forget di YouTube Don't Forget adalah sebuah lagu yang dinyanyikan oleh penyanyi-penulis lagu asal Amerika Seri...

 

 

2 Tawarikh 25Kitab Tawarikh (Kitab 1 & 2 Tawarikh) lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab 2 TawarikhKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen14← pasal 24 pasal 26 → 2 Tawarikh 25 (atau II Tawarikh 25, disingkat 2Taw 25) adalah pasal kedua puluh lima Kitab 2 Tawarikh dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Dalam Alkitab Ibrani termasuk dalam bagian Ketuvim (כְּתוּבִים, tulisan).[1] P...

 

 

Voce principale: Varese Calcio. Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Varese Football ClubStagione 1946-1947Sport calcio Squadra Varese Allenatore Primo Danieli Presidente Angelo Ronzoni Serie B15º posto nel girone A. Maggiori presenzeCampionato: Galli (42) Miglior marcatoreCampionato: Trapanelli (12) 1944-1945 1947...

« Mauroy » redirige ici. Pour les autres significations, voir Mauroy (homonymie). « Mauroy » redirige ici. Pour l’article homophone, voir Maurois. Pierre Mauroy Pierre Mauroy en 1982. Fonctions Sénateur français 2 octobre 1992 – 30 septembre 2011(18 ans, 11 mois et 28 jours) Élection 27 septembre 1992 Réélection 23 septembre 2001 Circonscription Nord Groupe politique SOC Président de l'Internationale socialiste 17 septembre 1992 – 10 novembr...

 

 

List of current and former restaurants in Boston, Massachusetts, U.S.This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of restaurants in Boston – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this message) The following is a list of notable restaurants in Boston...

 

 

Men's lacrosse team of Penn State University Penn State Nittany Lionsmen's lacrosseFounded1921UniversityPennsylvania State UniversityHead coachJeff Tambroni (since 2011 season)StadiumPanzer Stadium(capacity: 1,300)LocationState College, PennsylvaniaConferenceBig Ten ConferenceNicknameNittany LionsColorsBlue and white[1]   NCAA Tournament Final Fours2019, 2023NCAA Tournament Quarterfinals2019, 2023NCAA Tournament appearances(7) - 1973 (USILA), 2003, 2005, 2013,...

2017 song by Nathan Trent Running on AirSingle by Nathan TrentReleased26 February 2017 (2017-02-26)GenrePopLength2:48LabelORF-Enterprise Musikverlag [de]Songwriter(s)Nathan TrentBernhard PenziasNathan Trent singles chronology Like It Is (2016) Running on Air (2017) Good Vibes (2017) Eurovision Song Contest 2017 entryCountryAustriaArtist(s)Nathan TrentLanguageEnglishComposer(s)Nathan TrentBernhard PenziasLyricist(s)Nathan TrentBernhard PenziasFinals performanceSemi-...

 

 

Северный морской котик Самец Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапси...

 

 

For consideration of bills by the Senate 'in committee', see Committee of the Whole. This article is part of a series on thePolitics ofAustralia Constitution The Crown Monarch Charles III Governor-General David Hurley Executive Prime Minister Anthony Albanese (ALP) Deputy Prime Minister Richard Marles (ALP) Federal Executive Council Ministry Albanese ministry Cabinet Legislature Australian Parliament Senate President Sue Lines (ALP) Leader Penny Wong (ALP) House of Representatives Speaker Mi...

اضغط هنا للاطلاع على كيفية قراءة التصنيف النباتالعصر: 520–0 مليون سنة قك ك أ س د ف بر ث ج ط ب ن العصر الكمبري - الآن أنواع مختلفة من النباتات المرتبة التصنيفية مملكة[1]  التصنيف العلمي النطاق: حقيقيات النوى (غير مصنف) ثنائيات السوط غير مصنف: اللحائيات المملكة: النباتات�...

 

 

Lütfullah Aksungur Sports HallLütfullah Aksungur Spor SalonuLütfullah Aksungur Sports HallLocationAdana, TurkeyCoordinates37°03′14″N 35°21′29″E / 37.053797°N 35.358021°E / 37.053797; 35.358021OwnerÇukurova UniversityCapacity1,750Opened1994 The Lütfullah Aksungur Sports Hall (Turkish: Lütfullah Aksungur Spor Salonu) is an indoor arena for handball competitions located in Adana, Turkey. It has a seating capacity of 1,750.[1] The venue was built ...

 

 

Soccer clubWest Seattle Junction FCFoundedDecember 2023StadiumNino Cantu Southwest Athletics ComplexCapacity4,000OwnersJessica PierceKaitlyn JacksonMarissa VillegasHead CoachErik OmanLeagueUSL League TwoWebsiteClub website Home colors Away colors Current season West Seattle Junction FC is an American soccer club based in the West Seattle neighborhood of Seattle, Washington. The club will play its inaugural season in 2024, as part of the Northwest Division of USL League Two.[1] Juncti...

German writer (1940–2014) Michael Prinz von PreussenBorn(1940-03-22)22 March 1940Berlin, Nazi GermanyDied3 April 2014(2014-04-03) (aged 74)Burial11 April 2014Hohenzollern Castle, Baden-Württemberg, GermanySpouse Jutta Jörn ​ ​(m. 1966; div. 1982)​ Brigitte Wegner von Dallwitz ​ ​(m. 1982)​ IssueMichaela von Preussen Nataly von PreussenNamesWilhelm Heinrich Michael Louis Ferdinand Friedrich Franz Wladim...

 

 

French musicologist and composer Charles Malherbe Charles Théodore Malherbe (21 April 1853 – 5 October 1911) was a French violinist, musicologist, composer and music editor. Life and career Malherbe was born in Paris, son of Pierre Joseph Malherbe (1819–1890)[1] and Zoé Caroline Mozin (1832–1921) the youngest daughter of French painter Charles Mozin (1806–1862). He studied law and was admitted to the bar, but instead decided on music as a profession. He studied music with Ad...

 

 

マヘシュ・ブパシMahesh Bhupathi マヘシュ・ブパシ基本情報フルネーム Mahesh Shrinivas Bhupathi国籍 インド出身地 同・チェンナイ生年月日 (1974-06-07) 1974年6月7日(50歳)身長 185cm体重 88kg利き手 右バックハンド 両手打ちツアー経歴デビュー年 1995年引退年 2016年(最終出場年)ツアー通算 52勝シングルス 0勝ダブルス 52勝生涯通算成績 687勝392敗シングルス 10勝28敗ダブルス 687勝36...

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus pada 30 Mei 2024. Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Mei 2024. Nomor Pokok Perpustakaan (NPP) adalah kode atau tanda pen...

 

 

لغات تيرهينية   النسب كيان كيانكيان لاماديlanguoid (en) لغةلغة بشريةلغات تيرهينية تعديل مصدري - تعديل   التيرّهينية (بالإنجليزية: Tyrrhenian أو Tyrsenian، من اليونانية (الأتيكية: Τυῤῥηνοί Turrhēnoi، الآيونية: Τυρσηνοί Tursēnoi)) هي عائلة لغات منقرضة مقترحة، اقترحها اللساني هلموت ركس في 1998�...