ARGUS distribution
In physics , the ARGUS distribution , named after the particle physics experiment ARGUS ,[ 1] is the probability distribution of the reconstructed invariant mass of a decayed particle candidate in continuum background[clarification needed ] .
Definition
The probability density function (pdf) of the ARGUS distribution is:
f
(
x
;
χ χ -->
,
c
)
=
χ χ -->
3
2
π π -->
Ψ Ψ -->
(
χ χ -->
)
⋅ ⋅ -->
x
c
2
1
− − -->
x
2
c
2
exp
-->
{
− − -->
1
2
χ χ -->
2
(
1
− − -->
x
2
c
2
)
}
,
{\displaystyle f(x;\chi ,c)={\frac {\chi ^{3}}{{\sqrt {2\pi }}\,\Psi (\chi )}}\cdot {\frac {x}{c^{2}}}{\sqrt {1-{\frac {x^{2}}{c^{2}}}}}\exp {\bigg \{}-{\frac {1}{2}}\chi ^{2}{\Big (}1-{\frac {x^{2}}{c^{2}}}{\Big )}{\bigg \}},}
for
0
≤ ≤ -->
x
<
c
{\displaystyle 0\leq x<c}
. Here
χ χ -->
{\displaystyle \chi }
and
c
{\displaystyle c}
are parameters of the distribution and
Ψ Ψ -->
(
χ χ -->
)
=
Φ Φ -->
(
χ χ -->
)
− − -->
χ χ -->
ϕ ϕ -->
(
χ χ -->
)
− − -->
1
2
,
{\displaystyle \Psi (\chi )=\Phi (\chi )-\chi \phi (\chi )-{\tfrac {1}{2}},}
where
Φ Φ -->
(
x
)
{\displaystyle \Phi (x)}
and
ϕ ϕ -->
(
x
)
{\displaystyle \phi (x)}
are the cumulative distribution and probability density functions of the standard normal distribution, respectively.
Cumulative distribution function
The cumulative distribution function (cdf) of the ARGUS distribution is
F
(
x
)
=
1
− − -->
Ψ Ψ -->
(
χ χ -->
1
− − -->
x
2
/
c
2
)
Ψ Ψ -->
(
χ χ -->
)
{\displaystyle F(x)=1-{\frac {\Psi \left(\chi {\sqrt {1-x^{2}/c^{2}}}\right)}{\Psi (\chi )}}}
.
Parameter estimation
Parameter c is assumed to be known (the kinematic limit of the invariant mass distribution), whereas χ can be estimated from the sample X 1 , …, X n using the maximum likelihood approach. The estimator is a function of sample second moment, and is given as a solution to the non-linear equation
1
− − -->
3
χ χ -->
2
+
χ χ -->
ϕ ϕ -->
(
χ χ -->
)
Ψ Ψ -->
(
χ χ -->
)
=
1
n
∑ ∑ -->
i
=
1
n
x
i
2
c
2
{\displaystyle 1-{\frac {3}{\chi ^{2}}}+{\frac {\chi \phi (\chi )}{\Psi (\chi )}}={\frac {1}{n}}\sum _{i=1}^{n}{\frac {x_{i}^{2}}{c^{2}}}}
.
The solution exists and is unique, provided that the right-hand side is greater than 0.4; the resulting estimator
χ χ -->
^ ^ -->
{\displaystyle \scriptstyle {\hat {\chi }}}
is consistent and asymptotically normal .
Generalized ARGUS distribution
Sometimes a more general form is used to describe a more peaking-like distribution:
f
(
x
)
=
2
− − -->
p
χ χ -->
2
(
p
+
1
)
Γ Γ -->
(
p
+
1
)
− − -->
Γ Γ -->
(
p
+
1
,
1
2
χ χ -->
2
)
⋅ ⋅ -->
x
c
2
(
1
− − -->
x
2
c
2
)
p
exp
-->
{
− − -->
1
2
χ χ -->
2
(
1
− − -->
x
2
c
2
)
}
,
0
≤ ≤ -->
x
≤ ≤ -->
c
,
c
>
0
,
χ χ -->
>
0
,
p
>
− − -->
1
{\displaystyle f(x)={\frac {2^{-p}\chi ^{2(p+1)}}{\Gamma (p+1)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})}}\cdot {\frac {x}{c^{2}}}\left(1-{\frac {x^{2}}{c^{2}}}\right)^{p}\exp \left\{-{\frac {1}{2}}\chi ^{2}\left(1-{\frac {x^{2}}{c^{2}}}\right)\right\},\qquad 0\leq x\leq c,\qquad c>0,\,\chi >0,\,p>-1}
F
(
x
)
=
Γ Γ -->
(
p
+
1
,
1
2
χ χ -->
2
(
1
− − -->
x
2
c
2
)
)
− − -->
Γ Γ -->
(
p
+
1
,
1
2
χ χ -->
2
)
Γ Γ -->
(
p
+
1
)
− − -->
Γ Γ -->
(
p
+
1
,
1
2
χ χ -->
2
)
,
0
≤ ≤ -->
x
≤ ≤ -->
c
,
c
>
0
,
χ χ -->
>
0
,
p
>
− − -->
1
{\displaystyle F(x)={\frac {\Gamma \left(p+1,\,{\tfrac {1}{2}}\chi ^{2}\left(1-{\frac {x^{2}}{c^{2}}}\right)\right)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})}{\Gamma (p+1)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})}},\qquad 0\leq x\leq c,\qquad c>0,\,\chi >0,\,p>-1}
where Γ(·) is the gamma function , and Γ(·,·) is the upper incomplete gamma function .
Here parameters c , χ, p represent the cutoff, curvature, and power respectively.
The mode is:
c
2
χ χ -->
(
χ χ -->
2
− − -->
2
p
− − -->
1
)
+
χ χ -->
2
(
χ χ -->
2
− − -->
4
p
+
2
)
+
(
1
+
2
p
)
2
{\displaystyle {\frac {c}{{\sqrt {2}}\chi }}{\sqrt {(\chi ^{2}-2p-1)+{\sqrt {\chi ^{2}(\chi ^{2}-4p+2)+(1+2p)^{2}}}}}}
The mean is:
μ μ -->
=
c
p
π π -->
Γ Γ -->
(
p
)
Γ Γ -->
(
5
2
+
p
)
χ χ -->
2
p
+
2
2
p
+
2
M
(
p
+
1
,
5
2
+
p
,
− − -->
χ χ -->
2
2
)
Γ Γ -->
(
p
+
1
)
− − -->
Γ Γ -->
(
p
+
1
,
1
2
χ χ -->
2
)
{\displaystyle \mu =c\,p\,{\sqrt {\pi }}{\frac {\Gamma (p)}{\Gamma ({\tfrac {5}{2}}+p)}}{\frac {\chi ^{2p+2}}{2^{p+2}}}{\frac {M\left(p+1,{\tfrac {5}{2}}+p,-{\tfrac {\chi ^{2}}{2}}\right)}{\Gamma (p+1)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})}}}
where M(·,·,·) is the Kummer's confluent hypergeometric function .[ 2] [circular reference ]
The variance is:
σ σ -->
2
=
c
2
(
χ χ -->
2
)
p
+
1
χ χ -->
p
+
3
e
− − -->
χ χ -->
2
2
+
(
χ χ -->
2
− − -->
2
(
p
+
1
)
)
{
Γ Γ -->
(
p
+
2
)
− − -->
Γ Γ -->
(
p
+
2
,
1
2
χ χ -->
2
)
}
χ χ -->
2
(
p
+
1
)
(
Γ Γ -->
(
p
+
1
)
− − -->
Γ Γ -->
(
p
+
1
,
1
2
χ χ -->
2
)
)
− − -->
μ μ -->
2
{\displaystyle \sigma ^{2}=c^{2}{\frac {\left({\frac {\chi }{2}}\right)^{p+1}\chi ^{p+3}e^{-{\tfrac {\chi ^{2}}{2}}}+\left(\chi ^{2}-2(p+1)\right)\left\{\Gamma (p+2)-\Gamma (p+2,\,{\tfrac {1}{2}}\chi ^{2})\right\}}{\chi ^{2}(p+1)\left(\Gamma (p+1)-\Gamma (p+1,\,{\tfrac {1}{2}}\chi ^{2})\right)}}-\mu ^{2}}
p = 0.5 gives a regular ARGUS, listed above.
References
Further reading
Albrecht, H. (1994). "Measurement of the polarization in the decay B → J/ψK*". Physics Letters B . 340 (3): 217–220. Bibcode :1994PhLB..340..217A . doi :10.1016/0370-2693(94)01302-0 .
Pedlar, T.; Cronin-Hennessy, D.; Hietala, J.; Dobbs, S.; Metreveli, Z.; Seth, K.; Tomaradze, A.; Xiao, T.; Martin, L. (2011). "Observation of the hc (1P) Using e+ e− Collisions above the DD Threshold". Physical Review Letters . 107 (4): 041803. arXiv :1104.2025 . Bibcode :2011PhRvL.107d1803P . doi :10.1103/PhysRevLett.107.041803 . PMID 21866994 . S2CID 33751212 .
Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Y. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; et al. (2010). "Search for Charged Lepton Flavor Violation in Narrow Υ Decays". Physical Review Letters . 104 (15): 151802. arXiv :1001.1883 . Bibcode :2010PhRvL.104o1802L . doi :10.1103/PhysRevLett.104.151802 . PMID 20481982 . S2CID 14992286 .
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families