Unique point where the weighted relative position of the distributed mass sums to zero
In physics, the center of mass of a distribution of mass in space (sometimes referred to as the barycenter or balance point) is the unique point at any given time where the weighted relative position of the distributed mass sums to zero. For a rigid body containing its center of mass, this is the point to which a force may be applied to cause a linear acceleration without an angular acceleration. Calculations in mechanics are often simplified when formulated with respect to the center of mass. It is a hypothetical point where the entire mass of an object may be assumed to be concentrated to visualise its motion. In other words, the center of mass is the particle equivalent of a given object for application of Newton's laws of motion.[1]l
In the case of a single rigid body, the center of mass is fixed in relation to the body, and if the body has uniform density, it will be located at the centroid. The center of mass may be located outside the physical body, as is sometimes the case for hollow or open-shaped objects, such as a horseshoe. In the case of a distribution of separate bodies, such as the planets of the Solar System, the center of mass may not correspond to the position of any individual member of the system.
The concept of center of gravity or weight was studied extensively by the ancient Greek mathematician, physicist, and engineerArchimedes of Syracuse. He worked with simplified assumptions about gravity that amount to a uniform field, thus arriving at the mathematical properties of what we now call the center of mass. Archimedes showed that the torque exerted on a lever by weights resting at various points along the lever is the same as what it would be if all of the weights were moved to a single point—their center of mass. In his work On Floating Bodies, Archimedes demonstrated that the orientation of a floating object is the one that makes its center of mass as low as possible. He developed mathematical techniques for finding the centers of mass of objects of uniform density of various well-defined shapes.[2]
The center of mass is the unique point at the center of a distribution of mass in space that has the property that the weighted position vectors relative to this point sum to zero. In analogy to statistics, the center of mass is the mean location of a distribution of mass in space.
A system of particles
In the case of a system of particles Pi, i = 1, ..., n, each with mass mi that are located in space with coordinates ri, i = 1, ..., n, the coordinates R of the center of mass satisfy
Solving this equation for R yields the formula
A continuous volume
If the mass distribution is continuous with the density ρ(r) within a solid Q, then the integral of the weighted position coordinates of the points in this volume relative to the center of mass R over the volume V is zero, that is
Solve this equation for the coordinates R to obtain
Where M is the total mass in the volume.
If a continuous mass distribution has uniform density, which means that ρ is constant, then the center of mass is the same as the centroid of the volume.[11]
The coordinates R of the center of mass of a two-particle system, P1 and P2, with masses m1 and m2 is given by
Let the percentage of the total mass divided between these two particles vary from 100% P1 and 0% P2 through 50% P1 and 50% P2 to 0% P1 and 100% P2, then the center of mass R moves along the line from P1 to P2. The percentages of mass at each point can be viewed as projective coordinates of the point R on this line, and are termed barycentric coordinates. Another way of interpreting the process here is the mechanical balancing of moments about an arbitrary point. The numerator gives the total moment that is then balanced by an equivalent total force at the center of mass. This can be generalized to three points and four points to define projective coordinates in the plane, and in space, respectively.
Systems with periodic boundary conditions
For particles in a system with periodic boundary conditions two particles can be neighbours even though they are on opposite sides of the system. This occurs often in molecular dynamics simulations, for example, in which clusters form at random locations and sometimes neighbouring atoms cross the periodic boundary. When a cluster straddles the periodic boundary, a naive calculation of the center of mass will incorrect. A generalized method for calculating the center of mass for periodic systems is to treat each coordinate, x and y and/or z, as if it were on a circle instead of a line.[12] The calculation takes every particle's x coordinate and maps it to an angle,
where xmax is the system size in the x direction and . From this angle, two new points can be generated, which can be weighted by the mass of the particle for the center of mass or given a value of 1 for the geometric center:
In the plane, these coordinates lie on a circle of radius 1. From the collection of and values from all the particles, the averages and are calculated.
where M is the sum of the masses of all of the particles.
These values are mapped back into a new angle, , from which the x coordinate of the center of mass can be obtained:
The process can be repeated for all dimensions of the system to determine the complete center of mass. The utility of the algorithm is that it allows the mathematics to determine where the "best" center of mass is, instead of guessing or using cluster analysis to "unfold" a cluster straddling the periodic boundaries. If both average values are zero, , then is undefined. This is a correct result, because it only occurs when all particles are exactly evenly spaced. In that condition, their x coordinates are mathematically identical in a periodic system.
A body's center of gravity is the point around which the resultant torque due to gravity forces vanishes.[13] Where a gravity field can be considered to be uniform, the mass-center and the center-of-gravity will be the same. However, for satellites in orbit around a planet, in the absence of other torques being applied to a satellite, the slight variation (gradient) in gravitational field between closer-to and further-from the planet (stronger and weaker gravity respectively) can lead to a torque that will tend to align the satellite such that its long axis is vertical. In such a case, it is important to make the distinction between the center-of-gravity and the mass-center.[14] Any horizontal offset between the two will result in an applied torque.
The mass-center is a fixed property for a given rigid body (e.g. with no slosh or articulation), whereas the center-of-gravity may, in addition, depend upon its orientation in a non-uniform gravitational field. In the latter case, the center-of-gravity will always be located somewhat closer to the main attractive body as compared to the mass-center, and thus will change its position in the body of interest as its orientation is changed.
In the study of the dynamics of aircraft, vehicles and vessels, forces and moments need to be resolved relative to the mass center. That is true independent of whether gravity itself is a consideration. Referring to the mass-center as the center-of-gravity is something of a colloquialism, but it is in common usage and when gravity gradient effects are negligible, center-of-gravity and mass-center are the same and are used interchangeably.
In physics the benefits of using the center of mass to model a mass distribution can be seen by considering the resultant of the gravity forces on a continuous body. Consider a body Q of volume V with density ρ(r) at each point r in the volume. In a parallel gravity field the force f at each point r is given by,
where dm is the mass at the point r, g is the acceleration of gravity, and is a unit vector defining the vertical direction.
Choose a reference point R in the volume and compute the resultant force and torque at this point,
and
If the reference point R is chosen so that it is the center of mass, then
which means the resultant torque T = 0. Because the resultant torque is zero the body will move as though it is a particle with its mass concentrated at the center of mass.
By selecting the center of gravity as the reference point for a rigid body, the gravity forces will not cause the body to rotate, which means the weight of the body can be considered to be concentrated at the center of mass.
Linear and angular momentum
The linear and angular momentum of a collection of particles can be simplified by measuring the position and velocity of the particles relative to the center of mass. Let the system of particles Pi, i = 1, ..., n of masses mi be located at the coordinates ri with velocities vi. Select a reference point R and compute the relative position and velocity vectors,
The total linear momentum and angular momentum of the system are
and
If R is chosen as the center of mass these equations simplify to
where m is the total mass of all the particles, p is the linear momentum, and L is the angular momentum.
The law of conservation of momentum predicts that for any system not subjected to external forces the momentum of the system will remain constant, which means the center of mass will move with constant velocity. This applies for all systems with classical internal forces, including magnetic fields, electric fields, chemical reactions, and so on. More formally, this is true for any internal forces that cancel in accordance with Newton's Third Law.[15]
The experimental determination of a body's center of mass makes use of gravity forces on the body and is based on the fact that the center of mass is the same as the center of gravity in the parallel gravity field near the earth's surface.
The center of mass of a body with an axis of symmetry and constant density must lie on this axis. Thus, the center of mass of a circular cylinder of constant density has its center of mass on the axis of the cylinder. In the same way, the center of mass of a spherically symmetric body of constant density is at the center of the sphere. In general, for any symmetry of a body, its center of mass will be a fixed point of that symmetry.[16]
In two dimensions
An experimental method for locating the center of mass is to suspend the object from two locations and to drop plumb lines from the suspension points. The intersection of the two lines is the center of mass.[17]
The shape of an object might already be mathematically determined, but it may be too complex to use a known formula. In this case, one can subdivide the complex shape into simpler, more elementary shapes, whose centers of mass are easy to find. If the total mass and center of mass can be determined for each area, then the center of mass of the whole is the weighted average of the centers.[18] This method can even work for objects with holes, which can be accounted for as negative masses.[19]
A direct development of the planimeter known as an integraph, or integerometer, can be used to establish the position of the centroid or center of mass of an irregular two-dimensional shape. This method can be applied to a shape with an irregular, smooth or complex boundary where other methods are too difficult. It was regularly used by ship builders to compare with the required displacement and center of buoyancy of a ship, and ensure it would not capsize.[20][21]
In three dimensions
An experimental method to locate the three-dimensional coordinates of the center of mass begins by supporting the object at three points and measuring the forces, F1, F2, and F3 that resist the weight of the object, ( is the unit vector in the vertical direction). Let r1, r2, and r3 be the position coordinates of the support points, then the coordinates R of the center of mass satisfy the condition that the resultant torque is zero,
or
This equation yields the coordinates of the center of mass R* in the horizontal plane as,
The center of mass lies on the vertical line L, given by
The three-dimensional coordinates of the center of mass are determined by performing this experiment twice with the object positioned so that these forces are measured for two different horizontal planes through the object. The center of mass will be the intersection of the two lines L1 and L2 obtained from the two experiments.
Engineers try to design a sports car so that its center of mass is lowered to make the car handle better, which is to say, maintain traction while executing relatively sharp turns.
The characteristic low profile of the U.S. military Humvee was designed in part to allow it to tilt farther than taller vehicles without rolling over, by ensuring its low center of mass stays over the space bounded by the four wheels even at angles far from the horizontal.
The center of mass is an important point on an aircraft, which significantly affects the stability of the aircraft. To ensure the aircraft is stable enough to be safe to fly, the center of mass must fall within specified limits. If the center of mass is ahead of the forward limit, the aircraft will be less maneuverable, possibly to the point of being unable to rotate for takeoff or flare for landing.[22] If the center of mass is behind the aft limit, the aircraft will be more maneuverable, but also less stable, and possibly unstable enough so as to be impossible to fly. The moment arm of the elevator will also be reduced, which makes it more difficult to recover from a stalled condition.[23]
For helicopters in hover, the center of mass is always directly below the rotorhead. In forward flight, the center of mass will move forward to balance the negative pitch torque produced by applying cyclic control to propel the helicopter forward; consequently a cruising helicopter flies "nose-down" in level flight.[24]
The center of mass plays an important role in astronomy and astrophysics, where it is commonly referred to as the barycenter. The barycenter is the point between two objects where they balance each other; it is the center of mass where two or more celestial bodies orbit each other. When a moon orbits a planet, or a planet orbits a star, both bodies are actually orbiting a point that lies away from the center of the primary (larger) body.[25] For example, the Moon does not orbit the exact center of the Earth, but a point on a line between the center of the Earth and the Moon, approximately 1,710 km (1,062 miles) below the surface of the Earth, where their respective masses balance. This is the point about which the Earth and Moon orbit as they travel around the Sun. If the masses are more similar, e.g., Pluto and Charon, the barycenter will fall outside both bodies.
Rigging and safety
Knowing the location of the center of gravity when rigging is crucial, possibly resulting in severe injury or death if assumed incorrectly. A center of gravity that is at or above the lift point will most likely result in a tip-over incident. In general, the further the center of gravity below the pick point, the safer the lift. There are other things to consider, such as shifting loads, strength of the load and mass, distance between pick points, and number of pick points. Specifically, when selecting lift points, it is very important to place the center of gravity at the center and well below the lift points.[26]
The center of mass of the adult human body vertically is 10 cm above the trochanter (the femur joins the hip),[27] with it in horizontally being located 1.4 cm forward of the knee, and 1.0 behind the trochanter.[28] In kinesiology and biomechanics, the center of mass is an important parameter that assists people in understanding their human locomotion. Typically, a human's center of mass is detected with one of two methods: the reaction board method is a static analysis that involves the person lying down on that instrument, and use of their static equilibrium equation to find their center of mass; the segmentation method relies on a mathematical solution based on the physical principle that the summation of the torques of individual body sections, relative to a specified axis, must equal the torque of the whole system that constitutes the body, measured relative to the same axis.[29]
Optimization
The Center-of-gravity method is a method for convex optimization, which uses the center-of-gravity of the feasible region.
Bai, Linge; Breen, David (2008). "Calculating Center of Mass in an Unbounded 2D Environment". Journal of Graphics, GPU, and Game Tools. 13 (4): 53–60. doi:10.1080/2151237X.2008.10129266. S2CID40807367.
Beatty, Millard F. (2006), Principles of Engineering Mechanics, Volume 2: Dynamics—The Analysis of Motion, Mathematical Concepts and Methods in Science and Engineering, vol. 33, Springer, ISBN978-0-387-23704-6
De Silva, Clarence W. (2002), Vibration and shock handbook, CRC Press, ISBN978-0-8493-1580-0
Basilika Tempat Ziarah Bunda Maria Penolong Umat KristianiBasilika Minor Tempat Ziarah Bunda Maria Penolong Umat KristianiSpanyol: Basílica de María AuxiliadoraBasilika Tempat Ziarah Bunda Maria Penolong Umat KristianiLokasiLimaNegara PeruDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktifAdministrasiKeuskupan AgungKeuskupan Agung Lima Basilika Tempat Ziarah Bunda Maria Penolong Umat Kristiani (Spanyol: Basílica de María Auxiliadora) adalah sebua...
Pasar Kliwon beralih ke halaman ini. Untuk kelurahan yang bernama Pasar Kliwon, lihat pula Pasar Kliwon, Pasar Kliwon, Surakarta.. Pasar KliwonKecamatanPeta lokasi Kecamatan Pasar KliwonNegara IndonesiaProvinsiJawa TengahKotaSurakartaPemerintahan • Camat-Populasi • Total74,145 (2.010) jiwaKode Kemendagri33.72.03 Kode BPS3372030 Desa/kelurahan9 Pasar Kliwon antara tahun 1857 dan 1874 Pasar Kliwon (Hanacaraka: ꦥꦱꦂꦏ꧀ꦭꦶꦮꦺꦴꦤ꧀, Jawa: Pasa...
Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Tsar – berita · surat kabar · buku · cendekiawan · JSTOR Lambang Ketsaran Rusia (1547–1721). Di Indonesia, tsar identik dengan penguasa monarki Rusia. Tsar (bahasa Bulgaria цар, bahasa Rusia царь, ts...
Event in second English Civil War Pride's PurgePart of the Second English Civil WarColonel Pride refusing admission to the secluded members of the Long Parliament.Planned byElements within the New Model ArmyObjectiveRemoval from the Long Parliament of members considered to be opponents of the New Model ArmyDate6 December 1648 (1648-12-06)OutcomeEstablishment of the Rump ParliamentCasualtiesNone Pride's Purge is the name commonly given to an event that took place on 6 Decem...
Capital city of Victoria, Australia This article is about the Australian metropolitan area. For other uses, see Melbourne (disambiguation). MelbourneNaarm (Woiwurrung) Naarm (Boonwurrung)VictoriaMelbourne CBDFlinders Street StationShrine of RemembranceMelbourne Cricket GroundRoyal Exhibition BuildingPrinces BridgeMap of Melbourne, Australia, printable and editableMelbourneCoordinates37°48′51″S 144°57′47″E / 37.81417°S 144.96306°E / -37.81417; 144.96306...
Untuk kegunaan lain, lihat Eulogi (disambiguasi). Artikel ini bukan mengenai elegi. George W. Bush mengirimkan sebuah eulogi pada pemakaman negara Ronald Reagan, Juni 2004 Eulogi (from εὐλογία, eulogia, Yunani Klasik untuk pujian) adalah sebuah pidato atau penulisan pujian terhadap seseorang atau suatu hal, khususnya orang yang telah wafat atau pensiun.[1][2][3] Eulogi diberikan sebagai bagian dari upacara pemakaman. Pidato tersebut dilaksanakan dalam sebuah ru...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2012. Apfeldorf Lambang kebesaranLetak Apfeldorf di Landsberg am Lech NegaraJermanNegara bagianBayernWilayahOberbayernKreisLandsberg am LechMunicipal assoc.ReichlingPemerintahan • MayorGeorg EppleLuas • Total12,31 km2 (475 sq&...
Disambiguazione – Se stai cercando l'attore, vedi William Boyd (attore). William Boyd William Boyd (Accra, 7 marzo 1952) è uno scrittore e sceneggiatore britannico di origini scozzesi, noto in Italia soprattutto per il romanzo Brazzaville Beach (1990). Come sceneggiatore, ha collaborato alla realizzazione di film tratti dai romanzi degli scrittori contemporanei Mario Vargas Llosa e Joyce Cary. Indice 1 Biografia 2 Opera e pensiero 2.1 Elenco delle opere 3 Filmografia 3.1 Sceneggiatore 3.2...
Не следует путать с гей-парадом. У этого термина существуют и другие значения, см. Гей-прайд (значения). Московский гей-парад в 2010 году Гей-прайд (англ. Gay pride) — акция, задачей которой является демонстрация существования в обществе ЛГБТ (лесбиянок, геев, бисексуалов и тран...
مشروع أم الحول للطاقة في الوكرة، قطر. قطر عضو في منظمة الدول المصدرة للنفط (أوبك)، وتُعدّ من أهم البلدان المصدرة للغاز الطبيعي في العالم حيث بدأ إنتاجها بالتزايد منذ عام 2005. الغاز الطبيعي كانت قطر سابع مصدر للغاز الطبيعي في العالم في عام 2009 (2.9% من اجمالي الإنتاج العالمي) تليه...
Monocultural metaphor For other uses, see Melting pot (disambiguation). The image of the United States as a melting pot was popularized by the 1908 play The Melting Pot. A melting pot is a monocultural metaphor for a heterogeneous society becoming more homogeneous, the different elements melting together with a common culture; an alternative being a homogeneous society becoming more heterogeneous through the influx of foreign elements with different cultural backgrounds, possessing the potent...
Mountain in the U.S. state of Alaska Mount BonaHighest pointElevation16,550 ft (5,040 m)[1]NAVD88Prominence6,900 ft (2,100 m)[1]Isolation49.7 mi (80.0 km)[1]ListingNorth America highest peaks 10thNorth America prominent peak 84thUS highest major peaks 4thAlaska highest major peaks 4thCoordinates61°23′08″N 141°44′55″W / 61.38556°N 141.74861°W / 61.38556; -141.74861[2]GeographyMount BonaLocation in Alas...
For flag of the city, see Flags of New York City. State of New YorkUseCivil and state flag Proportion1:2AdoptedApril 2, 1901; 123 years ago (1901-04-02)(modified in April 2020)DesignA state coat of arms on a blue field. Flag of the governor of New YorkProportion3:5 Coat of arms of the State of New YorkVersionsGreat Seal of the State of New York ArmigerState of New YorkAdopted1882, modified 1896, 1901, and 2020CrestAn American eagle with wings displayed, surmounting a globe d...
Pour les articles homonymes, voir locks. Dreadlocks d'un rasta. Les dreadlocks (littéralement « boucles de (la) terreur », cf. infra paragraphe Rastafari) ou cadenettes[réf. nécessaire], appelées parfois tout simplement dreads ou locks ou encore rastas[1], sont des mèches de cheveux emmêlées. Au cours de l'histoire, les dreadlocks (nom féminin pluriel) ont été portées par différents peuples sur différents continents. Principe Les dreadlocks se forment se...
Filippo Cecchi Padre Filippo Cecchi, nato Giulio Isdegerde Cecchi (Ponte Buggianese, 31 maggio 1822 – Firenze, 1º maggio 1887), è stato un fisico, religioso e inventore italiano, abile costruttore di strumenti scientifici. Indice 1 Biografia 2 Opere e bibliografia 3 Bibliografia 4 Altri progetti 5 Collegamenti esterni Biografia Dopo aver studiato presso le Scuole Pie di Firenze, entrato nell'ordine degli Scolopi, studiò scienze fisiche e matematiche nel collegio fiorentino di S. Giovanni...
Responses from other countries to the Brexit vote Part of a series of articles onBrexit Withdrawal of the United Kingdom from the European Union Glossary of terms Background European Communities Act 1975 EC membership referendum UK rebate Bruges speech No. No. No. Maastricht Rebels Black Wednesday European Union (Amendment) Act 2008 European Union Act 2011 UK opt-outs from EU legislation Euroscepticism in the UK UK opinion polling on EU membership Campaigns for a referendum People's Pledge La...
2С22 «Богдана» Боевая масса, т 28 Компоновочная схема колёсная САУ Экипаж, чел. 5[1] История Разработчик Краматорский завод тяжёлого станкостроения Производитель ХТЗ Годы разработки 2015-2018 Основные операторы Украина Вооружение Калибр и марка пушки 155 мм Длина ствола, кал...
Letak Girona di Catalunya Untuk sungai yang terletak di Alacant, lihat Sungai Girona. Untuk provinsi, lihat Girona (provinsi). Girona Girona (bahasa Spanyol: Gerona) merupakan nama kota di Spanyol. Letaknya di bagian timur. Tepatnya di wilayah otonomi Catalunya, Spanyol. Pada tahun 2005, kota ini memiliki jumlah penduduk sebanyak 86.672 jiwa dan memiliki luas wilayah 39,1 km². Dengan kepadatan penduduk 2.216,6 jiwa/km². Kota ini terletak di dua sungai yaitu Sungai Ter dan Sungai Onyar....