In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus. For example, many asymptotic expansions are derived from the formula, and Faulhaber's formula for the sum of powers is an immediate consequence.
The formula was discovered independently by Leonhard Euler and Colin Maclaurin around 1735. Euler needed it to compute slowly converging infinite series while Maclaurin used it to calculate integrals. It was later generalized to Darboux's formula.
The formula
If m and n are natural numbers and f(x) is a real or complex valued continuous function for real numbersx in the interval[m,n], then the integral
can be approximated by the sum (or vice versa)
(see rectangle method). The Euler–Maclaurin formula provides expressions for the difference between the sum and the integral in terms of the higher derivativesf(k)(x) evaluated at the endpoints of the interval, that is to say x = m and x = n.
Explicitly, for p a positive integer and a function f(x) that is p times continuously differentiable on the interval [m,n], we have
where Bk is the kth Bernoulli number (with B1 = 1/2) and Rp is an error term which depends on n, m, p, and f and is usually small for suitable values of p.
The formula is often written with the subscript taking only even values, since the odd Bernoulli numbers are zero except for B1. In this case we have[1][2]
or alternatively
The remainder term arises because the integral is usually not exactly equal to the sum. The formula may be derived by applying repeated integration by parts to successive intervals [r, r + 1] for r = m, m + 1, …, n − 1. The boundary terms in these integrations lead to the main terms of the formula, and the leftover integrals form the remainder term.
The remainder term has an exact expression in terms of the periodized Bernoulli functions Pk(x). The Bernoulli polynomials may be defined recursively by B0(x) = 1 and, for k ≥ 1,
The periodized Bernoulli functions are defined as
where ⌊x⌋ denotes the largest integer less than or equal to x, so that x − ⌊x⌋ always lies in the interval [0,1).
With this notation, the remainder term Rp equals
When k > 0, it can be shown that for 0 ≤ x ≤ 1,
where ζ denotes the Riemann zeta function; one approach to prove this inequality is to obtain the Fourier series for the polynomials Bk(x). The bound is achieved for even k when x is zero. The term ζ(k) may be omitted for odd k but the proof in this case is more complex (see Lehmer).[3] Using this inequality, the size of the remainder term can be estimated as
Low-order cases
The Bernoulli numbers from B1 to B7 are 1/2, 1/6, 0, −1/30, 0, 1/42, 0. Therefore, the low-order cases of the Euler–Maclaurin formula are:
Euler computed this sum to 20 decimal places with only a few terms of the Euler–Maclaurin formula in 1735. This probably convinced him that the sum equals π2/6, which he proved in the same year.[4]
If f is a polynomial and p is big enough, then the remainder term vanishes. For instance, if f(x) = x3, we can choose p = 2 to obtain, after simplification,
Approximation of integrals
The formula provides a means of approximating a finite integral. Let a < b be the endpoints of the interval of integration. Fix N, the number of points to use in the approximation, and denote the corresponding step size by h = b − a/N − 1. Set xi = a + (i − 1)h, so that x1 = a and xN = b. Then:[5]
This may be viewed as an extension of the trapezoid rule by the inclusion of correction terms. Note that this asymptotic expansion is usually not convergent; there is some p, depending upon f and h, such that the terms past order p increase rapidly. Thus, the remainder term generally demands close attention.[5]
The Euler–Maclaurin formula is also used for detailed error analysis in numerical quadrature. It explains the superior performance of the trapezoidal rule on smooth periodic functions and is used in certain extrapolation methods. Clenshaw–Curtis quadrature is essentially a change of variables to cast an arbitrary integral in terms of integrals of periodic functions where the Euler–Maclaurin approach is very accurate (in that particular case the Euler–Maclaurin formula takes the form of a discrete cosine transform). This technique is known as a periodizing transformation.
Asymptotic expansion of sums
In the context of computing asymptotic expansions of sums and series, usually the most useful form of the Euler–Maclaurin formula is
where a and b are integers.[6] Often the expansion remains valid even after taking the limits a → −∞ or b → +∞ or both. In many cases the integral on the right-hand side can be evaluated in closed form in terms of elementary functions even though the sum on the left-hand side cannot. Then all the terms in the asymptotic series can be expressed in terms of elementary functions. For example,
Here the left-hand side is equal to ψ(1)(z), namely the first-order polygamma function defined by
the gamma functionΓ(z) is equal to (z − 1)! when z is a positive integer. This results in an asymptotic expansion for ψ(1)(z). That expansion, in turn, serves as the starting point for one of the derivations of precise error estimates for Stirling's approximation of the factorial function.
Examples
If s is an integer greater than 1 we have:
Collecting the constants into a value of the Riemann zeta function, we can write an asymptotic expansion:
The Bernoulli polynomialsBn(x) and the periodic Bernoulli functions Pn(x) for n = 0, 1, 2, ... were introduced above.
The first several Bernoulli polynomials are
The values Bn(1) are the Bernoulli numbersBn. Notice that for n ≠ 1 we have
and for n = 1,
The functions Pn agree with the Bernoulli polynomials on the interval [0, 1] and are periodic with period 1. Furthermore, except when n = 1, they are also continuous. Thus,
Let k be an integer, and consider the integral
where
Using B1(0) = −1/2, B1(1) = 1/2, and summing the above from k = 0 to k = n − 1, we get
Adding f(n) − f(0)/2 to both sides and rearranging, we have
This is the p = 1 case of the summation formula. To continue the induction, we apply integration by parts to the error term:
where
The result of integrating by parts is
Summing from k = 0 to k = n − 1 and substituting this for the lower order error term results in the p = 2 case of the formula,
This process can be iterated. In this way we get a proof of the Euler–Maclaurin summation formula which can be formalized by mathematical induction, in which the induction step relies on integration by parts and on identities for periodic Bernoulli functions.
^Pengelley, David J. (2007). "Dances between continuous and discrete: Euler's summation formula". Euler at 300. MAA Spectrum. Washington, DC: Mathematical Association of America. pp. 169–189. arXiv:1912.03527. MR2349549.
^ abDevries, Paul L.; Hasbrun, Javier E. (2011). A first course in computational physics (2nd ed.). Jones and Bartlett Publishers. p. 156.
Gould, H. W.; Squire, William (1963). "Maclaurin's second formula and its generalization". Amer. Math. Monthly. 70 (1): 44–52. doi:10.2307/2312783. JSTOR2312783. MR0146551.
Pembantu Letnan Dua KKOEvert Julius Vence Kandou Informasi pribadiLahir(1937-05-18)18 Mei 1937[1]Kebumen, Jawa TengahMeninggal4 September 2020(2020-09-04) (umur 83)Banyuwangi, Jawa TimurKarier militerPihak IndonesiaDinas/cabang TNI Angkatan LautPangkat Pembantu Letnan DuaSatuanKKO (IPAM)PenghargaanBintang Kartika Eka PaksiSunting kotak info • L • B Pembantu Letnan Dua KKO (Purn.) Evert Julius Vence Kandou atau lebih akrab dengan nama E.J. Ven Kandou (18 Mei 193...
Berikut daftar Kepala Daerah dan Wakil Kepala Daerah di 10 kabupaten/kota di Maluku Utara adalah: Kabupaten/Kota Foto Bupati/Wali Kota Bupati/Wali Kota Foto Wakil Bupati/Wali Kota Wakil Bupati/Wali Kota Mulai Menjabat Selesai Menjabat(Direncanakan) Ref KabupatenHalmahera BaratDaftar Bupati/Wakil Bupati James Uang Djufri Muhammad 26 Februari 2021 31 Desember 2024 [1] KabupatenHalmahera SelatanDaftar Bupati/Wakil Bupati Hasan Ali Bassam Kasuba 15 Desember 2023 31 Desember 2024 [2 ...
Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...
لمعانٍ أخرى، طالع مقاطعة ماكون (توضيح). مقاطعة ماكون الإحداثيات 39°50′N 92°34′W / 39.83°N 92.56°W / 39.83; -92.56 [1] تاريخ التأسيس 1837 سبب التسمية ناثانيل ماكون تقسيم إداري البلد الولايات المتحدة[2] التقسيم الأعلى ميزوري العاصمة ميكون...
العلاقات البحرينية المدغشقرية البحرين مدغشقر البحرين مدغشقر تعديل مصدري - تعديل العلاقات البحرينية المدغشقرية هي العلاقات الثنائية التي تجمع بين البحرين ومدغشقر.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم...
Daylight savings time in the central European time zone Time in Europe: Light Blue Western European Time / Greenwich Mean Time (UTC) Blue Western European Time / Greenwich Mean Time (UTC) Western European Summer Time / British Summer Time / Irish Standard Time (UTC+1) Red Central European Time (UTC+1) Central European Summer Time (UTC+2) Yellow Eastern European Time / Kaliningrad Time (UTC+2) Ochre Eastern European Time (UTC+2) Eastern European Summer Time (UTC+3) Green Moscow Time / Turkey T...
Расизм в России — проявление расизма жителями России по отношению к представителям других рас или этнических групп[1][2]. Расизм является идеологической основой для насильственных акций, число жертв которых достигло пика в 716 человек в 2007 году[3]. Правитель�...
Online web archive For a guide to using archive.today within Wikipedia, see Help:Using archive.today. archive.todayScreenshot of the archive.today home pageType of siteWeb archivingAvailable inMultilingualURL archive.today archive.fo archive.is archive.li archive.md archive.ph archive.vn archiveiya74codqgiixo33q62qlrqtkgmcitqx5u2oeqnmn5bpcbiyd.onion (Accessing link help)[1] RegistrationNoLaunchedMay 16, 2012; 11 years ago (2012-05-16)[2] archive.today (o...
Cruiser of the Royal Navy For other ships with the same name, see HMS Dauntless. History United Kingdom NameHMS Dauntless OrderedSeptember 1916 BuilderPalmers Shipbuilding and Iron Company, Jarrow Laid down3 January 1917 Launched10 April 1918 Commissioned22 November 1918 IdentificationPennant number:D45 FateBroken up April 1946 General characteristics Class and typeDanae-class light cruiser Displacement4,650 tons Length471 ft (144 m) Beam46 ft (14 m) Draught14.5 ft (4...
Tentara JoseonLambang tentara JoseonAktifAbad ke-14-1897Negara KoreaAliansi Raja JoseonCabangPengawal kerajaanTentara pusatTentara dan milisi provinsiTipe unitTentaraPeranPertempuran daratJumlah personel84,500 (1592)87,600 (1640-an)Dibubarkan13 Oktober 1897InsigniaBendera Tentara Joseon (Korean: 조선군대; Hanja: 朝鮮軍隊) adalah tentara dinasti Joseon di Korea. Tentara mempertahankan perbatasan utara tetapi jarang mempertahankan wilayah selatan. Tentara terkenal karena menangkis ...
Hecht MuseumDidirikan1984LokasiHaifa, IsraelSitus webHecht Museum Peti mati antropoida dari Zaman Perunggu Muda yang ditemukan di Deir al-Balah Reuben and Edith Hecht Museum atau dikenal sebagai Hecht Museum adalah sebuah museum yang terletak dibealam lingkungan Universitas Haifa,[1] Israel. Sejarah Perahu Ma'agan Michael Hecht Museum didirikan pada tahun 1984 oleh Reuben Hecht,[1] direktur Dagon Silos dan merupakan anggota pendiri University of Haifa Board of Governors. Selam...
Norman Patrick Brown's immunity from prosecution order in exchange for his testimony in Leonard Peltier's criminal trial Immunity from prosecution is a doctrine of international law that allows an accused to avoid prosecution for criminal offences. Immunities are of two types. The first is functional immunity, or immunity ratione materiae. This is an immunity granted to people who perform certain functions of state. The second is personal immunity, or immunity ratione personae. This is an imm...
Il terrore di Frankensteinuno screenshot del trailer del filmTitolo originaleThe Ghost of Frankenstein Lingua originaleinglese Paese di produzioneStati Uniti d'America Anno1942 Durata67 min Dati tecniciB/N Genereorrore, fantascienza RegiaErle C. Kenton SoggettoEric Taylor[1] SceneggiaturaScott Darling Casa di produzioneUniversal Pictures MusicheHans J. Salter ScenografiaJack Otterson TruccoJack Pierce Interpreti e personaggi Cedric Hardwicke: Dottor Ludwig Frankenstein Lon Chaney ...
Powdered gruel with a malted flavor For the type of biscuit, see Malted milk (biscuit). For the Robert Johnson song, see Robert Johnson. A Carnation-brand malted milk can Malted milk or malt powder is a powder made from a mixture of malted barley, wheat flour, and evaporated whole milk powder. The powder is used to add its distinctive flavor to beverages and other foods, but it is also used in baking to help dough cook properly. History William Horlick Explorer Ernest de Koven Leffingwell pos...