This article is about waves in the scientific sense. For waves on seas and lakes, see Wind wave. For the human hand gesture, see Waving. For other uses, see Wave (disambiguation).
"Wave motion" redirects here. For the scientific journal, see Wave Motion (journal). For the album by Fat Jon the Ample Soul Physician, see Wave Motion (album).
In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a travelling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero.
A physical wave field is almost always confined to some finite region of space, called its domain. For example, the seismic waves generated by earthquakes are significant only in the interior and surface of the planet, so they can be ignored outside it. However, waves with infinite domain, that extend over the whole space, are commonly studied in mathematics, and are very valuable tools for understanding physical waves in finite domains.
A plane wave is an important mathematical idealization where the disturbance is identical along any (infinite) plane normal to a specific direction of travel. Mathematically, the simplest wave is a sinusoidal plane wave in which at any point the field experiences simple harmonic motion at one frequency. In linear media, complicated waves can generally be decomposed as the sum of many sinusoidal plane waves having different directions of propagation and/or different frequencies. A plane wave is classified as a transverse wave if the field disturbance at each point is described by a vector perpendicular to the direction of propagation (also the direction of energy transfer); or longitudinal wave if those vectors are aligned with the propagation direction. Mechanical waves include both transverse and longitudinal waves; on the other hand electromagnetic plane waves are strictly transverse while sound waves in fluids (such as air) can only be longitudinal. That physical direction of an oscillating field relative to the propagation direction is also referred to as the wave's polarization, which can be an important attribute.
A wave can be described just like a field, namely as a function where is a position and is a time.
The value of is a point of space, specifically in the region where the wave is defined. In mathematical terms, it is usually a vector in the Cartesian three-dimensional space. However, in many cases one can ignore one dimension, and let be a point of the Cartesian plane . This is the case, for example, when studying vibrations of a drum skin. One may even restrict to a point of the Cartesian line – that is, the set of real numbers. This is the case, for example, when studying vibrations in a violin string or recorder. The time , on the other hand, is always assumed to be a scalar; that is, a real number.
The value of can be any physical quantity of interest assigned to the point that may vary with time. For example, if represents the vibrations inside an elastic solid, the value of is usually a vector that gives the current displacement from of the material particles that would be at the point in the absence of vibration. For an electromagnetic wave, the value of can be the electric field vector , or the magnetic field vector , or any related quantity, such as the Poynting vector. In fluid dynamics, the value of could be the velocity vector of the fluid at the point , or any scalar property like pressure, temperature, or density. In a chemical reaction, could be the concentration of some substance in the neighborhood of point of the reaction medium.
For any dimension (1, 2, or 3), the wave's domain is then a subset of , such that the function value is defined for any point in . For example, when describing the motion of a drum skin, one can consider to be a disk (circle) on the plane with center at the origin , and let be the vertical displacement of the skin at the point of and at time .
Waves of the same type are often superposed and encountered simultaneously at a given point in space and time. The properties at that point are the sum of the properties of each component wave at that point. In general, the velocities are not the same, so the wave form will change over time and space.
This section needs expansion with: concept summary. You can help by adding to it. (May 2023)
Wave families
Sometimes one is interested in a single specific wave. More often, however, one needs to understand large set of possible waves; like all the ways that a drum skin can vibrate after being struck once with a drum stick, or all the possible radar echoes one could get from an airplane that may be approaching an airport.
In some of those situations, one may describe such a family of waves by a function that depends on certain parameters, besides and . Then one can obtain different waves – that is, different functions of and – by choosing different values for those parameters.
For example, the sound pressure inside a recorder that is playing a "pure" note is typically a standing wave, that can be written as
The parameter defines the amplitude of the wave (that is, the maximum sound pressure in the bore, which is related to the loudness of the note); is the speed of sound; is the length of the bore; and is a positive integer (1,2,3,...) that specifies the number of nodes in the standing wave. (The position should be measured from the mouthpiece, and the time from any moment at which the pressure at the mouthpiece is maximum. The quantity is the wavelength of the emitted note, and is its frequency.) Many general properties of these waves can be inferred from this general equation, without choosing specific values for the parameters.
As another example, it may be that the vibrations of a drum skin after a single strike depend only on the distance from the center of the skin to the strike point, and on the strength of the strike. Then the vibration for all possible strikes can be described by a function .
Sometimes the family of waves of interest has infinitely many parameters. For example, one may want to describe what happens to the temperature in a metal bar when it is initially heated at various temperatures at different points along its length, and then allowed to cool by itself in vacuum. In that case, instead of a scalar or vector, the parameter would have to be a function such that is the initial temperature at each point of the bar. Then the temperatures at later times can be expressed by a function that depends on the function (that is, a functional operator), so that the temperature at a later time is
Differential wave equations
Another way to describe and study a family of waves is to give a mathematical equation that, instead of explicitly giving the value of , only constrains how those values can change with time. Then the family of waves in question consists of all functions that satisfy those constraints – that is, all solutions of the equation.
This approach is extremely important in physics, because the constraints usually are a consequence of the physical processes that cause the wave to evolve. For example, if is the temperature inside a block of some homogeneous and isotropic solid material, its evolution is constrained by the partial differential equation
where is the heat that is being generated per unit of volume and time in the neighborhood of at time (for example, by chemical reactions happening there); are the Cartesian coordinates of the point ; is the (first) derivative of with respect to ; and is the second derivative of relative to . (The symbol "" is meant to signify that, in the derivative with respect to some variable, all other variables must be considered fixed.)
This equation can be derived from the laws of physics that govern the diffusion of heat in solid media. For that reason, it is called the heat equation in mathematics, even though it applies to many other physical quantities besides temperatures.
For another example, we can describe all possible sounds echoing within a container of gas by a function that gives the pressure at a point and time within that container. If the gas was initially at uniform temperature and composition, the evolution of is constrained by the formula
Here is some extra compression force that is being applied to the gas near by some external process, such as a loudspeaker or piston right next to .
This same differential equation describes the behavior of mechanical vibrations and electromagnetic fields in a homogeneous isotropic non-conducting solid. Note that this equation differs from that of heat flow only in that the left-hand side is , the second derivative of with respect to time, rather than the first derivative . Yet this small change makes a huge difference on the set of solutions . This differential equation is called "the" wave equation in mathematics, even though it describes only one very special kind of waves.
Consider a traveling transverse wave (which may be a pulse) on a string (the medium). Consider the string to have a single spatial dimension. Consider this wave as traveling
in the direction in space. For example, let the positive direction be to the right, and the negative direction be to the left.
This wave can then be described by the two-dimensional functions
(waveform traveling to the right)
(waveform traveling to the left)
or, more generally, by d'Alembert's formula:[6]
representing two component waveforms and traveling through the medium in opposite directions. A generalized representation of this wave can be obtained[7] as the partial differential equation
The form or shape of F in d'Alembert's formula involves the argument x − vt. Constant values of this argument correspond to constant values of F, and these constant values occur if x increases at the same rate that vt increases. That is, the wave shaped like the function F will move in the positive x-direction at velocity v (and G will propagate at the same speed in the negative x-direction).[9]
In the case of a periodic function F with period λ, that is, F(x + λ − vt) = F(x − vt), the periodicity of F in space means that a snapshot of the wave at a given time t finds the wave varying periodically in space with period λ (the wavelength of the wave). In a similar fashion, this periodicity of F implies a periodicity in time as well: F(x − v(t + T)) = F(x − vt) provided vT = λ, so an observation of the wave at a fixed location x finds the wave undulating periodically in time with period T = λ/v.[10]
The amplitude of a wave may be constant (in which case the wave is a c.w. or continuous wave), or may be modulated so as to vary with time and/or position. The outline of the variation in amplitude is called the envelope of the wave. Mathematically, the modulated wave can be written in the form:[11][12][13]
where is the amplitude envelope of the wave, is the wavenumber and is the phase. If the group velocity (see below) is wavelength-independent, this equation can be simplified as:[14]
showing that the envelope moves with the group velocity and retains its shape. Otherwise, in cases where the group velocity varies with wavelength, the pulse shape changes in a manner often described using an envelope equation.[14][15]
Phase velocity is the rate at which the phase of the wave propagates in space: any given phase of the wave (for example, the crest) will appear to travel at the phase velocity. The phase velocity is given in terms of the wavelengthλ (lambda) and periodT as
Group velocity is a property of waves that have a defined envelope, measuring propagation through space (that is, phase velocity) of the overall shape of the waves' amplitudes—modulation or envelope of the wave.
When any two sine waves of the same frequency (but arbitrary phase) are linearly combined, the result is another sine wave of the same frequency; this property is unique among periodic waves. Conversely, if some phase is chosen as a zero reference, a sine wave of arbitrary phase can be written as the linear combination of two sine waves with phases of zero and a quarter cycle, the sine and cosinecomponents, respectively.
A plane wave is a kind of wave whose value varies only in one spatial direction. That is, its value is constant on a plane that is perpendicular to that direction. Plane waves can be specified by a vector of unit length indicating the direction that the wave varies in, and a wave profile describing how the wave varies as a function of the displacement along that direction () and time (). Since the wave profile only depends on the position in the combination , any displacement in directions perpendicular to cannot affect the value of the field.
Plane waves are often used to model electromagnetic waves far from a source. For electromagnetic plane waves, the electric and magnetic fields themselves are transverse to the direction of propagation, and also perpendicular to each other.
A standing wave, also known as a stationary wave, is a wave whose envelope remains in a constant position. This phenomenon arises as a result of interference between two waves traveling in opposite directions.
The sum of two counter-propagating waves (of equal amplitude and frequency) creates a standing wave. Standing waves commonly arise when a boundary blocks further propagation of the wave, thus causing wave reflection, and therefore introducing a counter-propagating wave. For example, when a violin string is displaced, transverse waves propagate out to where the string is held in place at the bridge and the nut, where the waves are reflected back. At the bridge and nut, the two opposed waves are in antiphase and cancel each other, producing a node. Halfway between two nodes there is an antinode, where the two counter-propagating waves enhance each other maximally. There is no net propagation of energy over time.
A soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. (Dispersive effects are a property of certain systems where the speed of a wave depends on its frequency.) Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems.
Physical properties
Propagation
Wave propagation is any of the ways in which waves travel. With respect to the direction of the oscillation relative to the propagation direction, we can distinguish between longitudinal wave and transverse waves.
The propagation and reflection of plane waves—e.g. Pressure waves (P wave) or Shear waves (SH or SV-waves) are phenomena that were first characterized within the field of classical seismology, and are now considered fundamental concepts in modern seismic tomography. The analytical solution to this problem exists and is well known. The frequency domain solution can be obtained by first finding the Helmholtz decomposition of the displacement field, which is then substituted into the wave equation. From here, the plane wave eigenmodes can be calculated.[citation needed][clarification needed]
SV wave propagation
The analytical solution of SV-wave in a half-space indicates that the plane SV wave reflects back to the domain as a P and SV waves, leaving out special cases. The angle of the reflected SV wave is identical to the incidence wave, while the angle of the reflected P wave is greater than the SV wave. For the same wave frequency, the SV wavelength is smaller than the P wavelength. This fact has been depicted in this animated picture.[16]
P wave propagation
Similar to the SV wave, the P incidence, in general, reflects as the P and SV wave. There are some special cases where the regime is different.[clarification needed]
Wave velocity is a general concept, of various kinds of wave velocities, for a wave's phase and speed concerning energy (and information) propagation. The phase velocity is given as:
where:
The phase speed gives you the speed at which a point of constant phase of the wave will travel for a discrete frequency. The angular frequency ω cannot be chosen independently from the wavenumber k, but both are related through the dispersion relationship:
In the special case Ω(k) = ck, with c a constant, the waves are called non-dispersive, since all frequencies travel at the same phase speed c. For instance electromagnetic waves in vacuum are non-dispersive. In case of other forms of the dispersion relation, we have dispersive waves. The dispersion relationship depends on the medium through which the waves propagate and on the type of waves (for instance electromagnetic, sound or water waves).
In almost all cases, a wave is mainly a movement of energy through a medium. Most often, the group velocity is the velocity at which the energy moves through this medium.
Waves exhibit common behaviors under a number of standard situations, for example:
Waves normally move in a straight line (that is, rectilinearly) through a transmission medium. Such media can be classified into one or more of the following categories:
A bounded medium if it is finite in extent, otherwise an unbounded medium
A linear medium if the amplitudes of different waves at any particular point in the medium can be added
A uniform medium or homogeneous medium if its physical properties are unchanged at different locations in space
An anisotropic medium if one or more of its physical properties differ in one or more directions
An isotropic medium if its physical properties are the same in all directions
Waves are usually defined in media which allow most or all of a wave's energy to propagate without loss. However materials may be characterized as "lossy" if they remove energy from a wave, usually converting it into heat. This is termed "absorption." A material which absorbs a wave's energy, either in transmission or reflection, is characterized by a refractive index which is complex. The amount of absorption will generally depend on the frequency (wavelength) of the wave, which, for instance, explains why objects may appear colored.
When a wave strikes a reflective surface, it changes direction, such that the angle made by the incident wave and line normal to the surface equals the angle made by the reflected wave and the same normal line.
Refraction is the phenomenon of a wave changing its speed. Mathematically, this means that the size of the phase velocity changes. Typically, refraction occurs when a wave passes from one medium into another. The amount by which a wave is refracted by a material is given by the refractive index of the material. The directions of incidence and refraction are related to the refractive indices of the two materials by Snell's law.
A wave exhibits diffraction when it encounters an obstacle that bends the wave or when it spreads after emerging from an opening. Diffraction effects are more pronounced when the size of the obstacle or opening is comparable to the wavelength of the wave.
When waves in a linear medium (the usual case) cross each other in a region of space, they do not actually interact with each other, but continue on as if the other one were not present. However at any point in that region the field quantities describing those waves add according to the superposition principle. If the waves are of the same frequency in a fixed phase relationship, then there will generally be positions at which the two waves are in phase and their amplitudes add, and other positions where they are out of phase and their amplitudes (partially or fully) cancel. This is called an interference pattern.
The phenomenon of polarization arises when wave motion can occur simultaneously in two orthogonal directions. Transverse waves can be polarized, for instance. When polarization is used as a descriptor without qualification, it usually refers to the special, simple case of linear polarization. A transverse wave is linearly polarized if it oscillates in only one direction or plane. In the case of linear polarization, it is often useful to add the relative orientation of that plane, perpendicular to the direction of travel, in which the oscillation occurs, such as "horizontal" for instance, if the plane of polarization is parallel to the ground. Electromagnetic waves propagating in free space, for instance, are transverse; they can be polarized by the use of a polarizing filter.
Longitudinal waves, such as sound waves, do not exhibit polarization. For these waves there is only one direction of oscillation, that is, along the direction of travel.
Dispersion is the frequency dependence of the refractive index, a consequence of the atomic nature of materials.[17]: 67
A wave undergoes dispersion when either the phase velocity or the group velocity depends on the wave frequency. Dispersion is seen by letting white light pass through a prism, the result of which is to produce the spectrum of colors of the rainbow. Isaac Newton was the first to recognize that this meant that white light was a mixture of light of different colors.[17]: 190
The Doppler effect or Doppler shift is the change in frequency of a wave in relation to an observer who is moving relative to the wave source.[18] It is named after the Austrian physicist Christian Doppler, who described the phenomenon in 1842.
A mechanical wave is an oscillation of matter, and therefore transfers energy through a medium.[19] While waves can move over long distances, the movement of the medium of transmission—the material—is limited. Therefore, the oscillating material does not move far from its initial position. Mechanical waves can be produced only in media which possess elasticity and inertia. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves.
The transverse vibration of a string is a function of tension and inertia, and is constrained by the length of the string as the ends are fixed. This constraint limits the steady state modes that are possible, and thereby the frequencies.
The speed of a transverse wave traveling along a vibrating string (v) is directly proportional to the square root of the tension of the string (T) over the linear mass density (μ):
where the linear density μ is the mass per unit length of the string.
Ripples on the surface of a pond are actually a combination of transverse and longitudinal waves; therefore, the points on the surface follow orbital paths.
Sound, a mechanical wave that propagates through gases, liquids, solids and plasmas.
Body waves travel through the interior of the medium along paths controlled by the material properties in terms of density and modulus (stiffness). The density and modulus, in turn, vary according to temperature, composition, and material phase. This effect resembles the refraction of light waves. Two types of particle motion result in two types of body waves: Primary and Secondary waves.
Seismic waves are waves of energy that travel through the Earth's layers, and are a result of earthquakes, volcanic eruptions, magma movement, large landslides and large man-made explosions that give out low-frequency acoustic energy. They include body waves—the primary (P waves) and secondary waves (S waves)—and surface waves, such as Rayleigh waves, Love waves, and Stoneley waves.
A shock wave is a type of propagating disturbance. When a wave moves faster than the local speed of sound in a fluid, it is a shock wave. Like an ordinary wave, a shock wave carries energy and can propagate through a medium; however, it is characterized by an abrupt, nearly discontinuous change in pressure, temperature and density of the medium.[20]
Shear waves are body waves due to shear rigidity and inertia. They can only be transmitted through solids and to a lesser extent through liquids with a sufficiently high viscosity.
Other
Waves of traffic, that is, propagation of different densities of motor vehicles, and so forth, which can be modeled as kinematic waves[21][22]
Metachronal wave refers to the appearance of a traveling wave produced by coordinated sequential actions.
An electromagnetic wave consists of two waves that are oscillations of the electric and magnetic fields. An electromagnetic wave travels in a direction that is at right angles to the oscillation direction of both fields. In the 19th century, James Clerk Maxwell showed that, in vacuum, the electric and magnetic fields satisfy the wave equation both with speed equal to that of the speed of light. From this emerged the idea that light is an electromagnetic wave. The unification of light and electromagnetic waves was experimentally confirmed by Hertz in the end of the 1880s. Electromagnetic waves can have different frequencies (and thus wavelengths), and are classified accordingly in wavebands, such as radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. The range of frequencies in each of these bands is continuous, and the limits of each band are mostly arbitrary, with the exception of visible light, which must be visible to the normal human eye.
The Dirac equation is a relativistic wave equation detailing electromagnetic interactions. Dirac waves accounted for the fine details of the hydrogen spectrum in a completely rigorous way. The wave equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed. In the context of quantum field theory, the Dirac equation is reinterpreted to describe quantum fields corresponding to spin-1⁄2 particles.
where h is the Planck constant, and p is the magnitude of the momentum of the particle. This hypothesis was at the basis of quantum mechanics. Nowadays, this wavelength is called the de Broglie wavelength. For example, the electrons in a CRT display have a de Broglie wavelength of about 10−13 m.
A wave representing such a particle traveling in the k-direction is expressed by the wave function as follows:
where the wavelength is determined by the wave vectork as:
and the momentum by:
However, a wave like this with definite wavelength is not localized in space, and so cannot represent a particle localized in space. To localize a particle, de Broglie proposed a superposition of different wavelengths ranging around a central value in a wave packet,[24] a waveform often used in quantum mechanics to describe the wave function of a particle. In a wave packet, the wavelength of the particle is not precise, and the local wavelength deviates on either side of the main wavelength value.
In representing the wave function of a localized particle, the wave packet is often taken to have a Gaussian shape and is called a Gaussian wave packet.[25][26][27] Gaussian wave packets also are used to analyze water waves.[28]
For example, a Gaussian wavefunction ψ might take the form:[29]
at some initial time t = 0, where the central wavelength is related to the central wave vector k0 as λ0 = 2π / k0. It is well known from the theory of Fourier analysis,[30] or from the Heisenberg uncertainty principle (in the case of quantum mechanics) that a narrow range of wavelengths is necessary to produce a localized wave packet, and the more localized the envelope, the larger the spread in required wavelengths. The Fourier transform of a Gaussian is itself a Gaussian.[31] Given the Gaussian:
the Fourier transform is:
The Gaussian in space therefore is made up of waves:
that is, a number of waves of wavelengths λ such that kλ = 2 π.
The parameter σ decides the spatial spread of the Gaussian along the x-axis, while the Fourier transform shows a spread in wave vectork determined by 1/σ. That is, the smaller the extent in space, the larger the extent in k, and hence in λ = 2π/k.
Gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy works to restore equilibrium. Surface waves on water are the most familiar example.
Gravitational waves also travel through space. The first observation of gravitational waves was announced on 11 February 2016.[32]
Gravitational waves are disturbances in the curvature of spacetime, predicted by Einstein's theory of general relativity.
^P.I. Richards (1956). "Shockwaves on the highway". Operations Research. 4 (1): 42–51. doi:10.1287/opre.4.1.42.
^A.T. Fromhold (1991). "Wave packet solutions". Quantum Mechanics for Applied Physics and Engineering (Reprint of Academic Press 1981 ed.). Courier Dover Publications. pp. 59 ff. ISBN978-0-486-66741-6. (p. 61) ...the individual waves move more slowly than the packet and therefore pass back through the packet as it advances
^
Ming Chiang Li (1980). "Electron Interference". In L. Marton; Claire Marton (eds.). Advances in Electronics and Electron Physics. Vol. 53. Academic Press. p. 271. ISBN978-0-12-014653-6.
Hunt, Frederick Vinton (1978). Origins in acoustics. Woodbury, NY: Published for the Acoustical Society of America through the American Institute of Physics. ISBN978-0300022209.
Ostrovsky, L.A.; Potapov, A.S. (1999). Modulated Waves, Theory and Applications. Baltimore: The Johns Hopkins University Press. ISBN978-0-8018-5870-3..
Griffiths, G.; Schiesser, W.E. (2010). Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple. Academic Press. ISBN9780123846532.
Jupiter Aerobatic Team TNI AULambang JAT Jupiter Aerobatic TeamDibentuk1996NegaraIndonesiaCabang TNI Angkatan UdaraBagian dariLanud AdisutjiptoJulukanJATMotoThe JupiterMaskotElang AngkasaSitus webwww.lanud-adisutjipto.mil.id Tim Aerobatik Jupiter TNI Angkatan Udara atau Jupiter Aerobatic Team TNI AU disingkat JAT adalah salah satu tim aerobatik milik TNI Angkatan Udara dalam bentuk Skadron Khusus dibawah Skadron Pendidikan 102, Wing Pendidikan Terbang, Lanud Adisucipto yang terbentuk sejak ta...
Mendekati LuguSingel oleh NOAHdari album Keterkaitan KeterikatanDirilis10 Agustus 2019 (2019-08-10)GenrePop rockfunk rockDurasi3:30LabelMusica Studio'sPenciptaArielProduserUkiCapung (co-produser)Kronologi singel NOAH Kau Udara Bagiku (2019) Mendekati Lugu (2019) Kala Cinta Menggoda (2020) Daftar lagu Keterkaitan Keterikatan8 lagu Wanitaku Kupeluk Hatimu Mendekati Lugu Mencari Cinta Menemaniku Kau Udara Bagiku My Situation Jalani Mimpi Video musikMendekati Lugu di YouTube Mendekati Lugu a...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Kevin ConboyInformasi pribadiTanggal lahir 15 Oktober 1987 (umur 36)Tempat lahir Esbjerg, DenmarkTinggi 1,85 m (6 ft 1 in)Posisi bermain BekInformasi klubKlub saat ini NECNomor 14Karier junior Jerne IF Esbjerg fBKarier senior*Tahun...
A modern trabàccolo in Cesenatico, Italy The trabàccolo, trabaccalo, trabacalo (in Italian) or trabakul (in Croatian), is a type of Adriatic Sea sailing coaster. The name comes from the word trabacca, which means tent, which in turn recalls the vessel's sails. The trabàccolo was a typical Venetian boat-form that dates back to the first half of the 15th century and that spread throughout the Adriatic. Built of oak and larch, trabàccoli were slow but reliable cargo vessels ranging between 5...
2014 single by Bebe Rexha I'm Gonna Show You CrazySingle by Bebe Rexhafrom the EP I Don't Wanna Grow Up ReleasedDecember 19, 2014GenrePopLength3:27LabelWarner Bros.Songwriter(s) Bebe Rexha Jon Levine Lauren Christy Producer(s)Jon LevineBebe Rexha singles chronology I Can't Stop Drinking About You (2014) I'm Gonna Show You Crazy (2014) Gone (2014) Music videoI'm Gonna Show You Crazy on YouTube I'm Gonna Show You Crazy is a song by American singer and songwriter Bebe Rexha from her debut e...
Let's & Go!爆走兄弟レッツ&ゴー!!(Bakusō Kyōdai Rettsu Endo Gō!!)Generesportivo, azione MangaAutoreTetsuhiro Koshita EditoreShogakukan RivistaCoroCoro Comic Targetshōnen 1ª edizionegiugno 1994 – ottobre 1999 Tankōbon20 (completa) Volumi it.inedito Serie TV animeLet's & Go - Sulle ali di un turboRegiaTetsurō Amino Char. designAkio Takami MusicheGoji Tsuno StudioXebec ReteTV Tokyo 1ª TV8 gennaio – 30 di...
Lanzhou 兰州Prefecture-level city兰州市View of LanzhouLocation of Lanzhou City (yellow) in Gansu and the PRCNegara TiongkokProvinsiGansuCounty-level divisions8Pemerintahan • MayorYuan Zhanting (袁占亭) • Deputy MayorCai MingLuas • Prefecture-level city13.300 km2 (5,100 sq mi) • Luas perkotaan1,088 km2 (0,420 sq mi)Populasi (2010 census) • Prefecture-level city3.616.163 •...
Beato Carlo Gnocchi Presbitero ed educatore NascitaSan Colombano al Lambro, 25 ottobre 1902 MorteMilano, 28 febbraio 1956 (53 anni) Venerato daChiesa cattolica Beatificazione25 ottobre 2009 da papa Benedetto XVI Ricorrenza25 ottobre Manuale Carlo GnocchiDon Gnocchi parte per il fronte con ReverberiNascitaSan Colombano al Lambro, 25 ottobre 1902 MorteMilano, 28 febbraio 1956 (53 anni) Cause della mortemalattia ReligioneCattolicesimo Dati militariPaese servito&...
Не следует путать с Археологическая комиссия. Археографические комиссии Административный центр Санкт-Петербург, Россия Локация Российская империя СССР Россия Тип организации государственная организация[d] Основание Дата основания 1834 Медиафайлы на Викискл...
English football player and manager (born 1947) Harry Redknapp Redknapp in 2011Personal informationFull name Henry James Redknapp[1]Date of birth (1947-03-02) 2 March 1947 (age 77)[1]Place of birth Poplar, London, EnglandPosition(s) MidfielderYouth career1958–1962 Tottenham Hotspur1962–1965 West Ham UnitedSenior career*Years Team Apps (Gls)1965–1972 West Ham United 149 (7)1972–1976 AFC Bournemouth 101 (5)1976 Brentford 1 (0)1976 Seattle Sounders[2] 15 (0)1...
Peta para Raja Muda di era Dinasti Qing. Wizurai Liangjiang Nama Tionghoa Hanzi tradisional: 兩江總督 Hanzi sederhana: 两江总督 Alih aksara Mandarin - Hanyu Pinyin: Liǎngjiāng Zǒngdū Gubernur Jenderal Dua Provinsi Yangtze dan Wilayah Sekitarnya yang Mengawasi Urusan Militer, Ketentuan dan Dana, Manajer Saluran Air, Direktur Urusan Sipil(nama lengkap jabatan) Hanzi tradisional: 總督兩江等處地方,提督軍務、糧餉、管理河道兼巡撫事 Hanzi sederhana: 总督两江...
Individual's journey through learning, work, and other aspects of life This article is about a person's occupational history. For other uses, see Career (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Career – news · newspapers · books · scholar · JSTOR (January 2012) (Learn how and when to...
State agency of New Jersey, United States This article is about the NJ Division of Community Affairs (NJDCA). For the DCA, which is the agency that protects consumers from scams and regulates certain professional occupations, see New Jersey Division of Consumer Affairs. This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several tem...
List of events ← 2010 2009 2008 2011 in India → 2012 2013 2014 Centuries: 19th 20th 21st Decades: 1990s 2000s 2010s 2020s See also:List of years in IndiaTimeline of Indian history Events in the year 2011 in the Republic of India. Incumbents Photo Post Name President Pratibha Patil Vice President Mohammad Hamid Ansari Prime Minister Manmohan Singh Chief Justice S. H. Kapadia Governors Post Name Andhra Pradesh E. S. L. Narasimhan Arunachal Pradesh Joginder Jaswant Singh Assam Janak...
Constituency of Bangladesh's Jatiya Sangsad Joypurhat-2Constituencyfor the Jatiya SangsadDistrictJoypurhat DistrictDivisionRajshahi DivisionElectorate307,298 (2018)[1]Current constituencyCreated1982PartyAwami LeagueMember(s)Abu Sayeed Al Mahmood Swapon← Seat no. 34Seat no. 35Seat no.36 → Joypurhat-2 is a constituency represented in the Jatiya Sangsad (National Parliament) of Bangladesh since 2014 by Abu Sayeed Al Mahmood Swapon of the Awami League. Boundaries The constituency enco...
1971 book by Larry Clark Tulsa Front coverAuthorLarry ClarkSubjectNon-fictionPublication placeUnited States Tulsa is a collection of black-and-white photographs by Larry Clark of the life of young people in Tulsa, Oklahoma. Its publication in 1971 caused a sensation within the photographic community, leading to a new interest in autobiographical work.[1] Later better known for directing the movie Kids, Clark was a Tulsa native and a drug addict during the period (1963–1971) when...
2010 studio album by Herbie HancockThe Imagine ProjectStudio album by Herbie HancockReleasedJune 22, 2010 (2010-06-22)StudiovariousGenreJazzLength66:11[1]LabelHancockProducer John Alagia Derek Trucks Herbie Hancock chronology River: The Joni Letters(2007) The Imagine Project(2010) Professional ratingsReview scoresSourceRatingAll About Jazz[2]Allmusic[3]Entertainment WeeklyB+[4]Jazzwise[5]The Guardian[6]Metro[7]PopM...
Pour les articles homonymes, voir Carné. Marcel Carné Marcel Carné en 1950. Données clés Nom de naissance Marcel Albert Carné Naissance 18 août 190617e arrondissement de Paris Nationalité Française Décès 31 octobre 1996 (à 90 ans)Clamart, Hauts-de-Seine Profession Réalisateur, scénariste Films notables Drôle de drameLe Quai des brumesHôtel du NordLe jour se lève Les Visiteurs du soir Les Enfants du paradis Les Tricheurs Site internet marcel-carne.com modifier Marce...