Scalar (physics)

Scalar quantities or simply scalars are physical quantities that can be described by a single pure number (a scalar, typically a real number), accompanied by a unit of measurement, as in "10 cm" (ten centimeters).[1] Examples of scalar quantities are length, mass, charge, volume, and time. Scalars may represent the magnitude of physical quantities, such as speed is to velocity.[2]

Scalars are unaffected by changes to a vector space basis (i.e., a coordinate rotation) but may be affected by translations (as in relative speed). A change of a vector space basis changes the description of a vector in terms of the basis used but does not change the vector itself, while a scalar has nothing to do with this change. In classical physics, like Newtonian mechanics, rotations and reflections preserve scalars, while in relativity, Lorentz transformations or space-time translations preserve scalars. The term "scalar" has origin in the multiplication of vectors by a unitless scalar, which is a uniform scaling transformation.

Relationship with the mathematical concept

A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space. For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field for the vector space in which the electric field is described. As the vector space in this example and usual cases in physics is defined over the mathematical field of real numbers or complex numbers, the magnitude is also an element of the field, so it is mathematically a scalar. Since the inner product is independent of any vector space basis, the electric field magnitude is also physically a scalar.

The mass of an object is unaffected by a change of vector space basis so it is also a physical scalar, described by a real number as an element of the real number field. Since a field is a vector space with addition defined based on vector addition and multiplication defined as scalar multiplication, the mass is also a mathematical scalar.

Scalar field

Since scalars mostly may be treated as special cases of multi-dimensional quantities such as vectors and tensors, physical scalar fields might be regarded as a special case of more general fields, like vector fields, spinor fields, and tensor fields.

Units

Like other physical quantities, a physical quantity of scalar is also typically expressed by a numerical value and a physical unit, not merely a number, to provide its physical meaning. It may be regarded as the product of the number and the unit (e.g., 1 km as a physical distance is the same as 1,000 m). A physical distance does not depend on the length of each base vector of the coordinate system where the base vector length corresponds to the physical distance unit in use. (E.g., 1 m base vector length means the meter unit is used.) A physical distance differs from a metric in the sense that it is not just a real number while the metric is calculated to a real number, but the metric can be converted to the physical distance by converting each base vector length to the corresponding physical unit.

Any change of a coordinate system may affect the formula for computing scalars (for example, the Euclidean formula for distance in terms of coordinates relies on the basis being orthonormal), but not the scalars themselves. Vectors themselves also do not change by a change of a coordinate system, but their descriptions changes (e.g., a change of numbers representing a position vector by rotating a coordinate system in use).

Classical scalars

An example of a scalar quantity is temperature: the temperature at a given point is a single number. Velocity, on the other hand, is a vector quantity.

Other examples of scalar quantities are mass, charge, volume, time, speed,[2] pressure, and electric potential at a point inside a medium. The distance between two points in three-dimensional space is a scalar, but the direction from one of those points to the other is not, since describing a direction requires two physical quantities such as the angle on the horizontal plane and the angle away from that plane. Force cannot be described using a scalar, since force has both direction and magnitude; however, the magnitude of a force alone can be described with a scalar, for instance the gravitational force acting on a particle is not a scalar, but its magnitude is. The speed of an object is a scalar (e.g., 180 km/h), while its velocity is not (e.g. a velocity of 180 km/h in a roughly northwest direction might consist of 108 km/h northward and 144 km/h westward). Some other examples of scalar quantities in Newtonian mechanics are electric charge and charge density.

Relativistic scalars

In the theory of relativity, one considers changes of coordinate systems that trade space for time. As a consequence, several physical quantities that are scalars in "classical" (non-relativistic) physics need to be combined with other quantities and treated as four-vectors or tensors. For example, the charge density at a point in a medium, which is a scalar in classical physics, must be combined with the local current density (a 3-vector) to comprise a relativistic 4-vector. Similarly, energy density must be combined with momentum density and pressure into the stress–energy tensor.

Examples of scalar quantities in relativity include electric charge, spacetime interval (e.g., proper time and proper length), and invariant mass.

Pseudoscalar

In physics, a pseudoscalar denotes a physical quantity analogous to a scalar. Both are physical quantities which assume a single value which is invariant under proper rotations. However, under the parity transformation, pseudoscalars flip their signs while scalars do not. As reflections through a plane are the combination of a rotation with the parity transformation, pseudoscalars also change signs under reflections.

See also

Notes

  1. ^ "Details for IEV number 102-02-19: "scalar quantity"". IEC 60050 - International Electrotechnical Vocabulary. Retrieved 2024-10-15.
  2. ^ a b Feynman, Leighton & Sands 1963

References

Read other articles:

Magdeburg The town's symbol - Cathedral of Magdeburg Lambang kebesaranLetak Magdeburg NegaraJermanNegara bagianSachsen-AnhaltKreisDistrik perkotaanSubdivisions40 boroughPemerintahan • Lord MayorLutz Trümper (SPD)Luas • Total200,95 km2 (7,759 sq mi)Ketinggian43 m (141 ft)Populasi (2011-12-31)[1] • Total232.364 • Kepadatan12/km2 (30/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos39104–39130Kode area telep...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cecil Duane Crabb – news · newspapers · books · scholar · JSTOR (November 2010) (Learn how and when to remove this template message) Cecil Duane Crabb (May 23, 1890 – April 27, 1953) was an American composer of ragtime music and a member of Indianapolis g...

Esta é a lista de primeiros-ministros do Benim (antigo Daomé). [1] Lista de chefes de Governo do Benim e Daomé (1960-2016) № Retrato Nome Mandato Partido Presidente(s) República do Daomé (1960-1975) 1 Hubert Maga(1916-2000) 1 de agosto de 1960 31 de dezembro de 1960 RDD Ele mesmo Vacante (31 de dezembro de 1960 - 25 de janeiro de 1964) 2 Justin Ahomadégbé-Tomêtin(1917-2002) 25 de janeiro de 1964 29 de novembro de 1965 PDD Sourou-Migan Apithy Vacante (29 de novembro de 1965 - 21 de d...

مزمارمعلومات عامةتصنيف الريشة المزدوجة هورنبوستيل-ساكس 422.112.2[1] تعديل - تعديل مصدري - تعديل ويكي بيانات  لمعانٍ أخرى، طالع مزمار (توضيح). المزمار هو آلة من الآلات الخشبية وآلات النفخ وهي من الآلات القديمة التي صنعها الإنسان من قصب الغاب، ويرجع تاريخ الآلة إلى القرن ا

Kémoko Camara Biographie Nationalité Guinéen Naissance 5 avril 1975 (48 ans) Conakry (Guinée) Taille 1,85 m (6′ 1″) Poste Gardien de but Parcours professionnel1 AnnéesClub 0M.0(B.) 1994-1999 AS Kaloum Star 1999-2002 KRC Harelbeke 2003-2004 Hapoël Bnei Sakhnin 2004-2005 Maccabi Ahi Nazareth 2005-2006 Hafia FC 2006-2007 AmaZulu FC 2008 Dundee United 2008 East Stirlingshire 2009-2010 SO Cholet 2011-2013 AS Kaloum Star 2013-2015 Horoya AC Sélections en équipe nationale2...

Лівіу Драгня рум. Liviu Nicolae Dragnea {{{ім'я}}} Нині на посадіНародився 28 жовтня 1962(1962-10-28)[1] (61 рік)Гратія, Телеорман, РумуніяВідомий як політик, барабанщик, кухар, ютубер, тіктокер, інфлюєнсерКраїна РумуніяAlma mater Carol I National Defence Universityd, Політехнічний університет Бух

Finlandia padaOlimpiade Musim Dingin 2010Kode IOCFINKONKomite Olimpiade FinlandiaSitus websport.fi/olympiakomitea (dalam bahasa Finlandia)Penampilan pada Olimpiade Musim Dingin 2010 di VancouverPeserta95 dalam 10 cabang olahragaPembawa benderaVille Peltonen (upacara pembukaan)Tanja Poutiainen (upacara penutupan)MedaliPeringkat ke-24 0 1 4 Total 5 Penampilan pada Olimpiade Musim Dingin (ringkasan)192419281932193619481952195619601964196819721976198019841988199219941998200220...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2020) ملعب بودونغ لكرة القدممعلومات عامةالبلد  الصين الاستعمالالرياضة كرة القدم الموقع الجغرافيالإحداثيات 31°14′22″N 121°36′36″E / 31.23931°N 121.61001°E / 31.23931;...

Pia Kjærsgaard 2009 Pia Merete Kjærsgaard (* 23. Februar 1947 in Kopenhagen) ist eine dänische Politikerin. Als Initiatorin und Vorsitzende (1995 bis 2012) der rechtspopulistischen Dansk Folkeparti (Dänische Volkspartei, kurz DF) profilierte sie sich vor allem im Kampf gegen Einwanderung und Multikulturalismus. Sie sicherte die parlamentarische Unterstützung der Minderheitsregierungen von Anders Fogh Rasmussen und Lars Løkke Rasmussen von 2001 bis 2011. 2015 bis 2019 war sie Parlamentsp...

Seasonal Halloween event Knott's Scary FarmGenreHalloweenFrequencyAnnualLocation(s)Knotts Berry Farm33°50′39″N 118°00′01″W / 33.844178°N 118.000267°W / 33.844178; -118.000267Years active1973–2019, 2021–Inaugurated1973; 50 years ago (1973)WebsiteOfficial website Knott's Scary Farm or Knott's Halloween Haunt is a seasonal Halloween event at Knott's Berry Farm in Buena Park, California. It is an event in which the theme park is transforme...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2021) متاحف الفنون الجميلة في سان فرانسيسكو   إحداثيات 37°46′17″N 122°28′07″W / 37.7715°N 122.46869444444°W / 37.7715; -122.46869444444  معلومات عامة القرية أو المدينة سان ف�...

Multinational holding and investment company Naspers LimitedNaspers headquarters in Foreshore, Cape TownTypePublicTraded asJSE: NPNLSE: NPSNIndustryInternet, E-commerce, fintech, food deliveryFounded12 May 1915; 108 years ago (1915-05-12)HeadquartersCape Town, South AfricaArea servedWorldwideKey peopleKoos Bekker (Chair)[1]Erwin Tu (Interim CEO) Phuti Mahanyele-Dabengwa (CEO, South Africa)Revenue US$22.1 billion (FY 2020)[2][3]Operating income US...

All God's Children Need Traveling Shoes Cover from the first edition of All God's Children Need Traveling ShoesPengarangMaya AngelouNegaraUnited StatesBahasaEnglishGenreAutobiographyDiterbitkan1986 (Random House)Halaman209ISBNISBN 0-394-52143-9Didahului olehThe Heart of a Woman Diikuti olehA Song Flung Up to Heaven  All God's Children Need Traveling Shoes, yang diterbitkan pada tahun 1986, adalah buku karya penyair dan penulisketurunan Afrika-Amerika, Maya Angelou's dari t...

British politician The Right HonourableFiona MactaggartMactaggart in 2005Parliamentary Under-Secretary of State for Criminal Justice, Race and VictimsIn office13 June 2003 – 5 May 2006Prime MinisterTony BlairPreceded byHilary BennSucceeded byGerry SutcliffeMember of Parliament for SloughIn office1 May 1997 – 3 May 2017Preceded byJohn Arthur WattsSucceeded byTanmanjeet Singh Dhesi Personal detailsBornFiona Margaret Mactaggart (1953-09-12) 12 September 1953 (age 70)Lo...

Norwegian multi-purpose sports stadium J.J. Ugland Stadion - LevermyrLocationGrimstad, NorwayCoordinates58°20′44″N 8°35′30″E / 58.345500°N 8.591720°E / 58.345500; 8.591720Capacity3,300[2]ConstructionBuilt1983Opened1983[1]TenantsFK Jerv (football)Amazon Grimstad (football)Sørild FIK (athletics) J.J. Ugland Stadion – Levermyr, more commonly (and formerly) known as Levermyr stadion, is a multi-purpose stadium in Grimstad, Norway and home of ...

ポータル 文学 後光厳院本源氏物語系図(ごこうごんいんほんげんじものがたりけいず)は、古系図に分類される源氏物語系図の一つ。南北朝時代の北朝第4代天皇(在位:正平8年/文和元年8月17日(1352年9月25日) - 建徳2年/応安4年3月23日(1371年4月9日))である後光厳天皇(延元3年/暦応元年3月2日(1338年3月23日) - 文中3年/応安7年1月29日(1374年3月12日))の宸筆と...

Professional body for structural engineering based in the United Kingdom This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Institution of Structural Engineers – news · newspapers · books · scholar · JSTOR (November 2013) (Learn how and when to remove this template message) Institution of Structural EngineersCo...

Hospital in Cheshire, EnglandCrossley Hospital EastCrossley Hospital EastShown in CheshireGeographyLocationDelamere Forest, Cheshire, EnglandCoordinates53°15′18″N 2°42′29″W / 53.255°N 2.708°W / 53.255; -2.708OrganisationCare systemNHSTypeSpecialistServicesEmergency departmentNoSpecialityTuberculosisHistoryOpened1905; 118 years ago (1905)Closed1988; 35 years ago (1988)LinksListsHospitals in England Crossley Hospital East (...

2018 concert tour by Billie Eilish Where's My Mind TourTour by Billie EilishAssociated albumDon't Smile at MeStart dateFebruary 14, 2018End dateApril 7, 2018No. of shows27Billie Eilish concert chronology Don't Smile at Me Tour(2017) Where's My Mind Tour(2018) 1 by 1 Tour(2018-19) The Where's My Mind Tour (stylized as wheres my mind tour) was the second headlining concert tour by American singer-songwriter Billie Eilish. It was in support of her debut EP Don't Smile at Me (2017), and consisted...

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (May 2022) (Learn how and when to remove this template message) Private, coeducational school in Roseville, , Michigan, United StatesSacred Heart High SchoolRoseville, MichiganSHHS Circa 1968LocationRoseville, (Macomb County), Michigan 48066United StatesCoordinates42°30′07″N 82°55′43″W / ...