Stress–energy tensor

Contravariant components of the stress–energy tensor.

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

Definition

The stress–energy tensor involves the use of superscripted variables (not exponents; see tensor index notation and Einstein summation notation). If Cartesian coordinates in SI units are used, then the components of the position four-vector x are given by: [ x0, x1, x2, x3 ] . In traditional Cartesian co-ordinates these are instead customarilly written [ t, x, y, z ] , where t is time in seconds, and x, y, and z are distances in meters.

The stress–energy tensor is defined as the tensor Tαβ of order two that gives the flux of the α-th component of the momentum vector across a surface with constant xβ coordinate. In the theory of relativity, this momentum vector is taken as the four-momentum. In general relativity, the stress–energy tensor is symmetric,[a]

In some alternative theories like Einstein–Cartan theory, the stress–energy tensor may not be perfectly symmetric because of a nonzero spin tensor, which geometrically corresponds to a nonzero torsion tensor.

Components

Because the stress–energy tensor is of order 2, its components can be displayed in 4 × 4 matrix form: where the indices μ and ν take on the values 0, 1, 2, 3.

In the following, k and range from 1 through 3:

  1. The time–time component is the density of relativistic mass, i.e., the energy density divided by the speed of light squared, while being in the co-moving frame of reference.[2] It has a direct physical interpretation. In the case of a perfect fluid this component is

    where is the relativistic mass per unit volume, and for an electromagnetic field in otherwise empty space this component is

    where E and B are the electric and magnetic fields, respectively.[3]
  2. The flux of relativistic mass across the xk surface is equivalent to the kth component of linear momentum density,
  3. The components represent flux of kth component of linear momentum across the x surface. In particular, (not summed) represents normal stress in the kth co-ordinate direction (k = 1, 2, 3), which is called "pressure" when it is the same in every direction, k. The remaining components represent shear stress (compare with the stress tensor).

In solid state physics and fluid mechanics, the stress tensor is defined to be the spatial components of the stress–energy tensor in the proper frame of reference. In other words, the stress–energy tensor in engineering differs from the relativistic stress–energy tensor by a momentum-convective term.

Covariant and mixed forms

Most of this article works with the contravariant form, Tμν of the stress–energy tensor. However, it is often necessary to work with the covariant form, or the mixed form, or as a mixed tensor density

This article uses the spacelike sign convention (−+++) for the metric signature.

Conservation law

In special relativity

The stress–energy tensor is the conserved Noether current associated with spacetime translations.

The divergence of the non-gravitational stress–energy is zero. In other words, non-gravitational energy and momentum are conserved, When gravity is negligible and using a Cartesian coordinate system for spacetime, this may be expressed in terms of partial derivatives as

The integral form of the non-covariant formulation is where N is any compact four-dimensional region of spacetime; is its boundary, a three-dimensional hypersurface; and is an element of the boundary regarded as the outward pointing normal.

In flat spacetime and using Cartesian coordinates, if one combines this with the symmetry of the stress–energy tensor, one can show that angular momentum is also conserved:

In general relativity

When gravity is non-negligible or when using arbitrary coordinate systems, the divergence of the stress–energy still vanishes. But in this case, a coordinate-free definition of the divergence is used which incorporates the covariant derivative where is the Christoffel symbol which is the gravitational force field.

Consequently, if is any Killing vector field, then the conservation law associated with the symmetry generated by the Killing vector field may be expressed as

The integral form of this is

In special relativity

In special relativity, the stress–energy tensor contains information about the energy and momentum densities of a given system, in addition to the momentum and energy flux densities.[4]

Given a Lagrangian density that is a function of a set of fields and their derivatives, but explicitly not of any of the spacetime coordinates, we can construct the canonical stress–energy tensor by looking at the total derivative with respect to one of the generalized coordinates of the system. So, with our condition

By using the chain rule, we then have

Written in useful shorthand,

Then, we can use the Euler–Lagrange Equation:

And then use the fact that partial derivatives commute so that we now have

We can recognize the right hand side as a product rule. Writing it as the derivative of a product of functions tells us that

Now, in flat space, one can write . Doing this and moving it to the other side of the equation tells us that

And upon regrouping terms,

This is to say that the divergence of the tensor in the brackets is 0. Indeed, with this, we define the stress–energy tensor:

By construction it has the property that

Note that this divergenceless property of this tensor is equivalent to four continuity equations. That is, fields have at least four sets of quantities that obey the continuity equation. As an example, it can be seen that is the energy density of the system and that it is thus possible to obtain the Hamiltonian density from the stress–energy tensor.

Indeed, since this is the case, observing that , we then have

We can then conclude that the terms of represent the energy flux density of the system.

Trace

Note that the trace of the stress–energy tensor is defined to be , so

Since ,

In general relativity

In general relativity, the symmetric stress–energy tensor acts as the source of spacetime curvature, and is the current density associated with gauge transformations of gravity which are general curvilinear coordinate transformations. (If there is torsion, then the tensor is no longer symmetric. This corresponds to the case with a nonzero spin tensor in Einstein–Cartan gravity theory.)

In general relativity, the partial derivatives used in special relativity are replaced by covariant derivatives. What this means is that the continuity equation no longer implies that the non-gravitational energy and momentum expressed by the tensor are absolutely conserved, i.e. the gravitational field can do work on matter and vice versa. In the classical limit of Newtonian gravity, this has a simple interpretation: kinetic energy is being exchanged with gravitational potential energy, which is not included in the tensor, and momentum is being transferred through the field to other bodies. In general relativity the Landau–Lifshitz pseudotensor is a unique way to define the gravitational field energy and momentum densities. Any such stress–energy pseudotensor can be made to vanish locally by a coordinate transformation.

In curved spacetime, the spacelike integral now depends on the spacelike slice, in general. There is in fact no way to define a global energy–momentum vector in a general curved spacetime.

Einstein field equations

In general relativity, the stress–energy tensor is studied in the context of the Einstein field equations which are often written as where is the Ricci tensor, is the Ricci scalar (the tensor contraction of the Ricci tensor), is the metric tensor, Λ is the cosmological constant (negligible at the scale of a galaxy or smaller), and is the Einstein gravitational constant.

Stress–energy in special situations

Isolated particle

In special relativity, the stress–energy of a non-interacting particle with rest mass m and trajectory is: where is the velocity vector (which should not be confused with four-velocity, since it is missing a ) is the Dirac delta function and is the energy of the particle.

Written in language of classical physics, the stress–energy tensor would be (relativistic mass, momentum, the dyadic product of momentum and velocity) .

Stress–energy of a fluid in equilibrium

For a perfect fluid in thermodynamic equilibrium, the stress–energy tensor takes on a particularly simple form

where is the mass–energy density (kilograms per cubic meter), is the hydrostatic pressure (pascals), is the fluid's four-velocity, and is the matrix inverse of the metric tensor. Therefore, the trace is given by

The four-velocity satisfies

In an inertial frame of reference comoving with the fluid, better known as the fluid's proper frame of reference, the four-velocity is

the matrix inverse of the metric tensor is simply

and the stress–energy tensor is a diagonal matrix

Electromagnetic stress–energy tensor

The Hilbert stress–energy tensor of a source-free electromagnetic field is

where is the electromagnetic field tensor.

Scalar field

The stress–energy tensor for a complex scalar field that satisfies the Klein–Gordon equation is and when the metric is flat (Minkowski in Cartesian coordinates) its components work out to be:

Variant definitions of stress–energy

There are a number of inequivalent definitions[5] of non-gravitational stress–energy:

Hilbert stress–energy tensor

The Hilbert stress–energy tensor is defined as the functional derivative where is the nongravitational part of the action, is the nongravitational part of the Lagrangian density, and the Euler–Lagrange equation has been used. This is symmetric and gauge-invariant. See Einstein–Hilbert action for more information.

Canonical stress–energy tensor

Noether's theorem implies that there is a conserved current associated with translations through space and time; for details see the section above on the stress–energy tensor in special relativity. This is called the canonical stress–energy tensor. Generally, this is not symmetric and if we have some gauge theory, it may not be gauge invariant because space-dependent gauge transformations do not commute with spatial translations.

In general relativity, the translations are with respect to the coordinate system and as such, do not transform covariantly. See the section below on the gravitational stress–energy pseudotensor.

Belinfante–Rosenfeld stress–energy tensor

In the presence of spin or other intrinsic angular momentum, the canonical Noether stress–energy tensor fails to be symmetric. The Belinfante–Rosenfeld stress–energy tensor is constructed from the canonical stress–energy tensor and the spin current in such a way as to be symmetric and still conserved. In general relativity, this modified tensor agrees with the Hilbert stress–energy tensor.

Gravitational stress–energy

By the equivalence principle gravitational stress–energy will always vanish locally at any chosen point in some chosen frame, therefore gravitational stress–energy cannot be expressed as a non-zero tensor; instead we have to use a pseudotensor.

In general relativity, there are many possible distinct definitions of the gravitational stress–energy–momentum pseudotensor. These include the Einstein pseudotensor and the Landau–Lifshitz pseudotensor. The Landau–Lifshitz pseudotensor can be reduced to zero at any event in spacetime by choosing an appropriate coordinate system.

See also

Notes

  1. ^ "All the stress–energy tensors explored above were symmetric. That they could not have been otherwise one sees as follows."

References

  1. ^ Misner, C.W.; Thorne, K.S.; Wheeler, J.A. (2017) [1973]. "Symmetry of the stress–energy tensor". Gravitation (reprint ed.). Princeton, NJ: Princeton University Press. section 5.7, pp. 141–142. ISBN 978-0-6911-7779-3.
  2. ^ Misner, Charles W.; Thorne, Kip S.; Wheeler, John A. (1973). Gravitation. San Francisco, CA: W.H. Freeman and Company. ISBN 0-7167-0334-3.
  3. ^ d'Inverno, R.A. (1992). Introducing Einstein's Relativity. New York, NY: Oxford University Press. ISBN 978-0-19-859686-8.
  4. ^ Landau, L.D.; Lifshitz, E.M. (2010). The Classical Theory of Fields (4th ed.). Butterworth-Heinemann. pp. 84–85. ISBN 978-0-7506-2768-9.
  5. ^ Baker, M.R.; Kiriushcheva, N.; Kuzmin, S. (2021). "Noether and Hilbert (metric) energy–momentum tensors are not, in general, equivalent". Nuclear Physics B. 962 (1): 115240. arXiv:2011.10611. Bibcode:2021NuPhB.96215240B. doi:10.1016/j.nuclphysb.2020.115240. S2CID 227127490.

Further reading

Read other articles:

American politician Deni TaverasTaveras in 2023Member of the Maryland House of Delegatesfrom the 47B districtIncumbentAssumed office January 11, 2023Preceded byWanika B. FisherMember of the Prince George's County Council, District 2In officeDecember 1, 2014 – December 5, 2022Preceded byWill CamposSucceeded byWanika B. Fisher Personal detailsBorn (1972-12-13) December 13, 1972 (age 50)New York City, New York, U.S.Political partyDemocraticResidenceAdelphi, Maryla...

فيليم الثاني، أمير أورانج   معلومات شخصية الميلاد 27 مايو 1626[1][2][3][4][5]  لاهاي  الوفاة 6 نوفمبر 1650 (24 سنة) [1][2][3][4][5]  لاهاي  سبب الوفاة جدري  مواطنة جمهورية هولندا  الزوجة ماري، الأميرة ملكية (12 مايو 1641–6 نوفمبر 1650)  ا�...

Sơ đồ hàm Weierstrass trong khoảng -2..2. Hàm có định dạng phân dạng, khi phóng to bất kỳ vùng tương tự vòng đỏ đều có định dạng tương tự cả sơ đồ chung. Trong toán học, hàm Weierstrass là một ví dụ về hàm liên tục nhưng không đâu khả vi. Hàm này do Weierstrass đưa ra. Hàm này được định nghĩa như sau: f ( x ) = ∑ n = 0 ∞ a n cos ⁡ ( b n π x ) , {\displaystyle f(x)=\sum _{n=0}^{\i...

Untuk kegunaan lain, lihat Derringer (disambiguasi). Sebuah Philadelphia Deringer asli buatan Henry Deringer. Ini adalah pistol kantung yang dipakai oleh John Wilkes Booth dalam pembunuhan Abraham Lincoln. Istilah derringer (/ˈdɛrɪndʒər/) adalah sebuah kesalahan pengucapan umum dari nama akhir Henry Deringer, seorang pembuat pistol kantung kecil terkenal pada abad ke-19.[1] Beberapa jiplakan dari pistol Philadelphia Deringer asli dibuat oleh para pembuat senjata lainnya di seluru...

Лема регулярності Семереді — лема із загальної теорії графів, яка стверджує, що вершини будь-якого досить великого графа можна розбити на скінченне число таких груп, що майже у всіх двочасткових графах, що з'єднують вершини з двох різних груп, ребра розподілені між верш

توري بيلليس  علم   الإحداثيات 44°49′13″N 7°13′24″E / 44.820277777778°N 7.2233333333333°E / 44.820277777778; 7.2233333333333  [1] تقسيم إداري  البلد إيطاليا[2][3]  التقسيم الأعلى مدينة تورينو الحضرية (1 يناير 2015–)  خصائص جغرافية  المساحة 21.1 كيلومتر مربع (9 أكتوبر 2011)[4]...

Cajititlán Localidad Laguna de Cajititlán CajititlánLocalización de Cajititlán en México CajititlánLocalización de Cajititlán en JaliscoCoordenadas 20°25′54″N 103°18′34″O / 20.43174, -103.3094Entidad Localidad • País México México • Estado Jalisco • Municipio Tlajomulco de ZúñigaAltitud   • Media 1562 m s. n. m.Población (2020)   • Total 17 818 hab.[1]​Huso horario Tiempo del Centro (UTC...

Sapporo 札幌市Kota terpilihCity of Sapporo[1]Dari kiri atas: Pemandangan malam Sapporo dilihat dari Gunung Moiwa, Sapporo Clock Tower, Sapporo Beer Museum, Stasiun Sapporo, Universitas Hokkaido, Sapporo Dome, dan Menara TV Sapporo dilihat dari Taman Odori BenderaEmblemLokasi Sapporo di Hokkaido (Subprefektur Ishikari)SapporoLokasi di JepangTampilkan peta JepangSapporoSapporo (Asia)Tampilkan peta AsiaSapporoSapporo (Bumi)Tampilkan peta BumiKoordinat: 43°4′N 141°21′E / ...

Прапор кантону Швейцарії — офіційний символ, який має кожен кантон. Список Прапор Затверджений Використання Опис 1930 – Ааргау Прапор розділений на дві рівні частини: ліва частина чорна, по центрі проведені три білі хвилясті лінії; права частина — три білі п'ятикутні

For the 1978 American television film, see Zuma Beach (film). Zuma Beach, looking northwest, near the county park Zuma Beach is a county beach at 30000 Pacific Coast Highway (PCH) in Malibu, California. One of the largest and most popular beaches in Los Angeles County, California, it is known for its long, wide sands and excellent surf. It consistently ranks among the healthiest beaches for clean water conditions in Los Angeles County.[1] History The beach's name may be related to the...

1945 novel by Fritz Leiber Destiny Times Three Cover of the first editionAuthorFritz LeiberCountryUnited StatesLanguageEnglishGenreScience fictionPublisherGalaxy Science Fiction NovelsPublication date1957 (standalone)Media typePrint (Paperback)Pages126 Destiny Times Three is an alternate timeline 1945 science fiction novel by American writer Fritz Leiber. It first appeared in Astounding Science Fiction in March and April 1945. In 1952 it featured in Five Science Fiction Novels published ...

نادي أقبو تأسس عام 2010 الطقم الأساسي الطقم الاحتياطي تعديل مصدري - تعديل   نادي أقبو ( بالفرنسية:CF Akbou ) هو نادي كرة قدم جزائري نسائي . يلعب في دوري الدرجة الأولى في الدوري الجزائري تأسس سنة 2010 .[1][2] الألقاب المراجع ^ فريق: فتيات قسنطينة نسخة محفوظة 18 فبراير 2018 على موقع ...

1699 music collection by Pachelbel Facsimile of the frontispiece of Hexachordum Apollinis. Hexachordum Apollinis (PWC 193–8, T. 211–6, PC 131–6, POP 1–6) is a collection of keyboard music by Johann Pachelbel, published in 1699. It comprises six arias with variations, on original themes, and is generally regarded as one of the pinnacles of Pachelbel's oeuvre. The collection includes a preface in which Pachelbel dedicates the work to Dieterich Buxtehude and Ferdinand Tobias Richter and ...

Bakeries of the United States The neon sign outside of Roeser's Bakery in Chicago, Illinois Roeser's Bakery is a bakery located at 3216 W. North Ave. in Chicago, Illinois.[1][2] It is credited as being the oldest family-owned bakery in Chicago.[3] History John Roeser Sr. arrived in the United States from Germany in 1905 and settled in Humboldt Park, a neighborhood in Chicago, Illinois. In 1911, John opened Roeser's Bakery in downtown Chicago. In 1936, John Sr. handed d...

Love So SweetLagu oleh Arashidari album TimeSisi-BItsumademo (いつまでもcode: ja is deprecated , Forever)Fight Song (Edisi Terbatas)Dirilis21 Februari 2007 (2007-02-21)FormatCDGenrePopLabelJ StormKronologi singel Aozora Pedal (2006) Love So Sweet (2007) We Can Make It! (2007) Love So Sweet adalah single ke-18 boyband Jepang, Arashi. Single ini dirilis dalam 2 edisi: satu edisi regular yang berisi bonus trek rahasia dan versi karaoke dari semua lagu yang ada dalam single, dan yang sa...

Saint-Maurice-d'Ibie Entidad subnacional Saint-Maurice-d'IbieLocalización de Saint-Maurice-d'Ibie en FranciaCoordenadas 44°30′04″N 4°28′59″E / 44.501111111111, 4.4830555555556Entidad Comuna de Francia • País Francia • Región Ródano-Alpes[1]​ • Departamento Ardèche[1]​ • Distrito distrito de Privas[1]​ • Cantón cantón de Villeneuve-de-Berg[1]​ • Mancomunidad Communauté de communes Berg et Coiron...

Invasión de la Indochina francesa Parte de Frente del Sudeste de Asia - Segunda Guerra Mundial Tropas japonesas entrando en Saigón.Fecha 22 - 26 de septiembre de 1940Lugar Indochina francesaResultado Victoria japonesaCambios territoriales Ocupación japonesa del norte de la Indochina francesa.Beligerantes Francia de Vichy Unión Indochina Imperio Japonés Comandantes Maurice Martin Akihito Nakamura Fuerzas en combate Ejército Francés• 2000 soldados Ejército Imperial Japonés• 34 ...

توم هيدليستون (بالإنجليزية: Tom Hiddleston)‏  توم هيدليستون في العرض الأول لفيلم ثور راجناروك 2017 أكتوبر معلومات شخصية اسم الولادة (بالإنجليزية: Thomas William Hiddleston)‏  الميلاد 9 فبراير 1981 (العمر 43 سنة)ويستمنستر, لندن , إنجلترا الجنسية بريطانية  المملكة المتحدة الزوجة زوي أشتون...

アラバマ 基本情報建造所 バージニア州ノーフォーク海軍工廠運用者 アメリカ海軍艦歴発注 1939年4月1日起工 1940年2月1日進水 1942年2月16日就役 1942年8月16日退役 1947年1月9日除籍 1962年6月1日その後 1964年6月11日より博物館船として公開要目基準排水量 35,000 トン満載排水量 44,374 トン全長 680フィート (210 m)最大幅 108フィート2インチ (32.97 m)吃水 35フィート1インチ (10.69...

Dalam nama Korean ini, nama keluarganya adalah Son. Son Suk-kuLahirSon Seok-koo[1]7 Februari 1983 (umur 41)Korea SelatanPekerjaanAktorTahun aktif2017–sekarangAgenSBD EntertainmentNama KoreaHangul손석구 Hanja孫錫久 Alih AksaraSon Seok-guMcCune–ReischauerSon Sŏk-ku Son Suk-ku (lahir 7 Februari 1983) adalah pemeran Korea Selatan dibawah SBD Entertainment. Ia berperan dalam beberapa seri televisi seperti Matrimonial Chaos, Designated Survivor: 60 Days, dan My Liberati...