Spin tensor

In mathematics, mathematical physics, and theoretical physics, the spin tensor is a quantity used to describe the rotational motion of particles in spacetime. The spin tensor has application in general relativity and special relativity, as well as quantum mechanics, relativistic quantum mechanics, and quantum field theory.

The special Euclidean group SE(d) of direct isometries is generated by translations and rotations. Its Lie algebra is written .

This article uses Cartesian coordinates and tensor index notation.

Background on Noether currents

The Noether current for translations in space is momentum, while the current for increments in time is energy. These two statements combine into one in spacetime: translations in spacetime, i.e. a displacement between two events, is generated by the four-momentum P. Conservation of four-momentum is given by the continuity equation:

where is the stress–energy tensor, and ∂ are partial derivatives that make up the four-gradient (in non-Cartesian coordinates this must be replaced by the covariant derivative). Integrating over space:

gives the four-momentum vector at time t.

The Noether current for a rotation about the point y is given by a tensor of 3rd order, denoted . Because of the Lie algebra relations

where the 0 subscript indicates the origin (unlike momentum, angular momentum depends on the origin), the integral:

gives the angular momentum tensor at time t.

Definition

The spin tensor is defined at a point x to be the value of the Noether current at x of a rotation about x,

The continuity equation

implies:

and therefore, the stress–energy tensor is not a symmetric tensor.

The quantity S is the density of spin angular momentum (spin in this case is not only for a point-like particle, but also for an extended body), and M is the density of orbital angular momentum. The total angular momentum is always the sum of spin and orbital contributions.

The relation:

gives the torque density showing the rate of conversion between the orbital angular momentum and spin.

Examples

Examples of materials with a nonzero spin density are molecular fluids, the electromagnetic field and turbulent fluids. For molecular fluids, the individual molecules may be spinning. The electromagnetic field can have circularly polarized light. For turbulent fluids, we may arbitrarily make a distinction between long wavelength phenomena and short wavelength phenomena. A long wavelength vorticity may be converted via turbulence into tinier and tinier vortices transporting the angular momentum into smaller and smaller wavelengths while simultaneously reducing the vorticity. This can be approximated by the eddy viscosity.

See also

References

  • A. K. Raychaudhuri; S. Banerji; A. Banerjee (2003). General Relativity, Astrophysics, and Cosmology. Astronomy and astrophysics library. Springer. pp. 66–67. ISBN 978-038-740-628-2.
  • J.A. Wheeler; C. Misner; K.S. Thorne (1973). Gravitation. W.H. Freeman & Co. pp. 156–159, §5.11. ISBN 978-0-7167-0344-0.
  • L. M. Butcher; A. Lasenby; M. Hobson (2012). "Localizing the Angular Momentum of Linear Gravity". Phys. Rev. D. 86 (8): 084012. arXiv:1210.0831. Bibcode:2012PhRvD..86h4012B. doi:10.1103/PhysRevD.86.084012. S2CID 119220791.
  • T. Banks (2008). "Modern Quantum Field Theory: A Concise Introduction". Cambridge University Press. ISBN 978-113-947-389-7.

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) إدموند يو   معلومات شخصية الميلاد 6 مارس 1984 (40 سنة)  سنغافورة  الإقامة طوكيو  مواطنة ماليزيا  الحياة العملية المهنة مخرج أفلام،  وكاتب سيناريو...

 

Atase pertahanan Turki di Afghanistan, Kolonel Can Bolat (kiri) pada saat penandatanganan dokumen diplomatis pada 2010 Atase Pertahanan (bahasa Inggris: Defence Attache), sering disingkat Athan adalah sebuah jabatan di lingkungan kedutaan besar suatu negara atau organisasi internasional lainnya (mis. NATO) yang mempunyai status diplomat yang dijabat oleh seorang perwira militer berpangkat tinggi (Kolonel/Bintang satu) bertugas menyelenggarakan fungsi diplomasi pertahanan. Jabatan ini telah me...

 

Pour les articles homonymes, voir Sophie Adlersparre (homonymie) et Adlersparre. Sophie Albertine AdlersparreAutoprotrait de Sofia AdlersparreNaissance 6 mars 1808Ottenby kungsgård (d)Décès 23 mars 1862 (à 54 ans)Église Sainte-Eugénie de StockholmSépulture Cimetière catholique de Stockholm (d)Période d'activité 1828-1862Nationalité suédoiseActivité PeintreMaîtres Léon Cogniet, Johan Gustaf Sandberg (en), Carl Gustaf Qvarnström, Olof Södermark (en)Père Axel Adlersparre ...

Cilamaya WetanKecamatanPeta lokasi Kecamatan Cilamaya WetanNegara IndonesiaProvinsiJawa BaratKabupatenKarawangPemerintahan • CamatDrs. H HamdaniPopulasi • Total75.863 jiwaKode pos41384[1]Kode Kemendagri32.15.15 Kode BPS3215081 Luas69,36 km2Desa/kelurahan12 Cilamaya Wetan (aksara Sunda: ᮎᮤᮜᮙᮚ ᮝᮦᮒᮔ᮪) (atau disebut juga Cilamaya Timur) adalah sebuah kecamatan di Kabupaten Karawang, Provinsi Jawa Barat, Indonesia . Dulu sebelum terjadi peme...

 

Chemical compound BAY 59-3074Legal statusLegal status In general: unscheduled Identifiers IUPAC name 3-[2-Cyano-3-(trifluoromethyl)phenoxy]phenyl 4,4,4-trifluoro-1-butanesulfonic acid ester CAS Number406205-74-1 YPubChem CID10479060ChemSpider8654468 YUNII5FO5Z101GUChemical and physical dataFormulaC18H13F6NO4SMolar mass453.36 g·mol−13D model (JSmol)Interactive image SMILES FC(F)(F)CCCS(=O)(=O)Oc2cc(Oc1cccc(c1C#N)C(F)(F)F)ccc2 InChI InChI=1S/C18H13F6NO4S/c19-17(20,21)8-3-...

 

Louis Duchesne Louis Marie Olivier Duchesne Louis Marie Olivier Duchesne (bahasa Prancis: [dyʃɛːn]; 13 September 1843 – 21 April 1922) merupakan seorang imam, filolog, guru, sejarawan Kristen, liturgi dan institusi Katolik Roma berkebangsaan Prancis. Karya Mémoire sur une mission au mont Athos (Paris: E. Thorin, 1876) Les Nouveaux textes de Saint Clément de Rome, 1877 De codicibus MSS Graecis Pii II in bibliotheca Alexandrino-Vaticana, Paris 1880 Origines du culte chrétien: etude...

Saša Ognenovski Informasi pribadiNama lengkap Saša OgnenovskiTanggal lahir 3 April 1979 (umur 45)Tempat lahir Melbourne, AustraliaTinggi 1,95 m (6 ft 5 in)Posisi bermain Bek tengahInformasi klubKlub saat ini Umm-SalalNomor 24Karier senior*Tahun Tim Tampil (Gol)1997–2000 Preston Lions 88 (8)2000–2002 Melbourne Knights 51 (0)2002–2003 Panachaiki 2 (0)2003–2004 Preston Lions 26 (5)2005 Fawkner-Whittlesea Blues 16 (2)2006–2008 Queensland Roar 38 (2)2008–2009 Ade...

 

Kadipaten FranconiaHerzogtum Frankencode: de is deprecated   (Jerman)StatusKadipaten stemAgama Katolik Roma (resmi)Paganisme JermanikPemerintahanKadipaten Feudal Digantikan oleh Elektorat Palatinate Pangeran-Keuskupan Würzburg County Nassau County Rieneck Sekarang bagian dariJerman Sunting kotak info • Lihat • BicaraBantuan penggunaan templat ini Franconia Barat dan Timur, sekitar 1000 Kadipaten Franconia (Jerman: Herzogtum Frankencode: de is deprecated ) adalah satu ...

 

Book by Raymond Chandler Killer in the Rain First edition coverAuthorRaymond ChandlerCountryUnited StatesLanguageEnglishGenreCrime short storiesPublisherHamish Hamilton (UK)Publication date1964Media typePrint (hardback)Pages332 pp Killer in the Rain is a collection of short stories, including the eponymous title story, written by hard-boiled detective fiction author Raymond Chandler. The collection features eight short stories originally published in pulp magazines between 1935 and 1941....

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

 

American nonprofit media organization For the home video company formerly known as First Look Media, see First Look Studios. First Look MediaCompany typeNonprofit organizationIndustryMass mediaFoundedOctober 2013; 10 years ago (2013-10)FoundersPierre OmidyarHeadquartersNew York City, New York, United StatesKey peopleMichael Bloom (CEO)ProductsInvestigative journalism, new mediaSubsidiariesThe InterceptThe NibField of VisionTopic StudiosTopicPress Freedom Defense FundWeb...

 

For the place formerly with this name near Lake Tahoe, see Stateline, California. Census designated place in California, United StatesLakesideCensus designated placeLakeside Rodeo Arena - Lakeside, San Diego County, CaliforniaLocation in San Diego County and the state of CaliforniaLakesideLocation in the United StatesCoordinates: 32°50′58″N 116°54′20″W / 32.84944°N 116.90556°W / 32.84944; -116.90556Country United StatesState CaliforniaCountySan Di...

ألمانيا البلد ؟؟ الاتحاد اتحاد ألمانيا لكرة اليد المدرب هاينر براند القائد أوفه غينسهايمر الزي الأساسي الزي الإحتياطي ألعاب أولمبية صيفية بطولة العالم لكرة اليد الظهور 17 (بدأت من 1938) أفضل نتيجة البطل في 1938 1978 2007 البطولة الأوروبية الظهور 7 (أول مرة في 1994) أفضل نتيجة البطل في ...

 

This article may require copy editing for grammar, style, cohesion, tone, or spelling. You can assist by editing it. (October 2023) (Learn how and when to remove this message) Pakistani ChristiansInterior of Saint Patrick's Cathedral, KarachiTotal population2.63 million 1.27% of the Pakistani Population[1]Regions with significant populationsEspecially in Punjab and Islamabad Capital TerritoryLanguagesPunjabiUrduEnglish Christianity is the third largest religion in Pakistan,[1]...

 

Questa voce o sezione sull'argomento edilizia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Sito di costruzioni a Colonia, 2017 L'edilizia è l'insieme delle tecniche e delle conoscenze finalizzate alla progettazione e realizzazione di una costruzione o più specificatamente di un edificio. Indice 1 Etimologia 2 Il processo edilizio 3 Applicazione nei ...

Country music radio station in Lansing, Michigan WITL-FMLansing, MichiganBroadcast areaLansing, MichiganFrequency100.7 MHz (HD Radio) [1]Branding100.7 WITLProgrammingFormatCountrySubchannelsHD2: WONU simulcastHD3: Air1AffiliationsCompass Media NetworksWestwood OneOwnershipOwnerTownsquare Media(Townsquare License, LLC)Sister stationsWFMK, WJIM, WJIM-FM, WMMQ, WVFNHistoryFirst air date1961 (as WMRT-FM)Former call signsWYFE (1964–1966)WMRT (1961–1964)Call sign meaningWhITtLeTechnical...

 

Call Me Maybe有空叩我卡莉·蕾·杰普森的单曲收录于专辑《Curiosity》與《Kiss》B面Both Sides NowTalk to Me发行日期2011年9月20日(加拿大)格式CD單曲數位下載录制时间2011年加拿大列治文(Umbrella Studios)类型青少年流行樂泡泡糖流行樂时长3:13唱片公司604唱片學童唱片新視鏡唱片词曲 卡莉·蕾·杰普森 乔希·拉姆齐 塔維詩·克勞 制作人乔希·拉姆齐卡莉·蕾·杰普森单曲年表 Sour Candy(2009�...

 

A metaclass describes commen behaviour for classes, like a class does for objects This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (September 2013) (Learn how and when to remove this message) This ar...

Torneo di Wimbledon 2011Singolare femminileSport Tennis Vincitrice Petra Kvitová Finalista Marija Šarapova Punteggio6-3, 6-4 Tornei Singolare uomini (q) donne (q)   ragazzi ragazze Doppio uomini (q) donne (q) misto ragazzi ragazze Doppio carrozzina uomini donne Doppio Leggende maschile femminile seniors 2010 2012 Voce principale: Torneo di Wimbledon 2011. La campionessa uscente era Serena Williams ma è stata eliminata al quarto turno da Marion Bartoli, hanno raggiunto la finale Marija...

 

Paesi con rappresentanze diplomatiche in Italia La rete delle rappresentanze diplomatiche in Italia cura le relazioni internazionali del mondo con la Repubblica Italiana. Indice 1 Ambasciate 2 Consolati di carriera e onorari 3 Organismi internazionali e Missioni speciali 4 Voci correlate 5 Collegamenti esterni Ambasciate Ambasciata dell'Argentina a Roma Ambasciata del Brasile a Roma Ambasciata del Cile a Roma Ambasciata di Francia a Roma Ambasciata di Grecia a Roma Ambasciata del Messico a Ro...