Levi-Civita symbol

In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers defined from the sign of a permutation of the natural numbers 1, 2, ..., n, for some positive integer n. It is named after the Italian mathematician and physicist Tullio Levi-Civita. Other names include the permutation symbol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric property and definition in terms of permutations.

The standard letters to denote the Levi-Civita symbol are the Greek lower case epsilon ε or ϵ, or less commonly the Latin lower case e. Index notation allows one to display permutations in a way compatible with tensor analysis: where each index i1, i2, ..., in takes values 1, 2, ..., n. There are nn indexed values of εi1i2...in, which can be arranged into an n-dimensional array. The key defining property of the symbol is total antisymmetry in the indices. When any two indices are interchanged, equal or not, the symbol is negated:

If any two indices are equal, the symbol is zero. When all indices are unequal, we have: where p (called the parity of the permutation) is the number of pairwise interchanges of indices necessary to unscramble i1, i2, ..., in into the order 1, 2, ..., n, and the factor (−1)p is called the sign, or signature of the permutation. The value ε1 2 ... n must be defined, else the particular values of the symbol for all permutations are indeterminate. Most authors choose ε1 2 ... n = +1, which means the Levi-Civita symbol equals the sign of a permutation when the indices are all unequal. This choice is used throughout this article.

The term "n-dimensional Levi-Civita symbol" refers to the fact that the number of indices on the symbol n matches the dimensionality of the vector space in question, which may be Euclidean or non-Euclidean, for example, or Minkowski space. The values of the Levi-Civita symbol are independent of any metric tensor and coordinate system. Also, the specific term "symbol" emphasizes that it is not a tensor because of how it transforms between coordinate systems; however it can be interpreted as a tensor density.

The Levi-Civita symbol allows the determinant of a square matrix, and the cross product of two vectors in three-dimensional Euclidean space, to be expressed in Einstein index notation.

Definition

The Levi-Civita symbol is most often used in three and four dimensions, and to some extent in two dimensions, so these are given here before defining the general case.

Two dimensions

In two dimensions, the Levi-Civita symbol is defined by: The values can be arranged into a 2 × 2 antisymmetric matrix:

Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry[1] and twistor theory,[2] where it appears in the context of 2-spinors.

Three dimensions

For the indices (i, j, k) in εijk, the values 1, 2, 3 occurring in the   cyclic order (1, 2, 3) correspond to ε = +1, while occurring in the   reverse cyclic order correspond to ε = −1, otherwise ε = 0.

In three dimensions, the Levi-Civita symbol is defined by:[3]

That is, εijk is 1 if (i, j, k) is an even permutation of (1, 2, 3), −1 if it is an odd permutation, and 0 if any index is repeated. In three dimensions only, the cyclic permutations of (1, 2, 3) are all even permutations, similarly the anticyclic permutations are all odd permutations. This means in 3d it is sufficient to take cyclic or anticyclic permutations of (1, 2, 3) and easily obtain all the even or odd permutations.

Analogous to 2-dimensional matrices, the values of the 3-dimensional Levi-Civita symbol can be arranged into a 3 × 3 × 3 array:

where i is the depth (blue: i = 1; red: i = 2; green: i = 3), j is the row and k is the column.

Some examples:

Four dimensions

In four dimensions, the Levi-Civita symbol is defined by:

These values can be arranged into a 4 × 4 × 4 × 4 array, although in 4 dimensions and higher this is difficult to draw.

Some examples:

Generalization to n dimensions

More generally, in n dimensions, the Levi-Civita symbol is defined by:[4]

Thus, it is the sign of the permutation in the case of a permutation, and zero otherwise.

Using the capital pi notation Π for ordinary multiplication of numbers, an explicit expression for the symbol is:[citation needed] where the signum function (denoted sgn) returns the sign of its argument while discarding the absolute value if nonzero. The formula is valid for all index values, and for any n (when n = 0 or n = 1, this is the empty product). However, computing the formula above naively has a time complexity of O(n2), whereas the sign can be computed from the parity of the permutation from its disjoint cycles in only O(n log(n)) cost.

Properties

A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor.

Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems related by orthogonal transformations. However, the Levi-Civita symbol is a pseudotensor because under an orthogonal transformation of Jacobian determinant −1, for example, a reflection in an odd number of dimensions, it should acquire a minus sign if it were a tensor. As it does not change at all, the Levi-Civita symbol is, by definition, a pseudotensor.

As the Levi-Civita symbol is a pseudotensor, the result of taking a cross product is a pseudovector, not a vector.[5]

Under a general coordinate change, the components of the permutation tensor are multiplied by the Jacobian of the transformation matrix. This implies that in coordinate frames different from the one in which the tensor was defined, its components can differ from those of the Levi-Civita symbol by an overall factor. If the frame is orthonormal, the factor will be ±1 depending on whether the orientation of the frame is the same or not.[5]

In index-free tensor notation, the Levi-Civita symbol is replaced by the concept of the Hodge dual.[citation needed]

Summation symbols can be eliminated by using Einstein notation, where an index repeated between two or more terms indicates summation over that index. For example,

.

In the following examples, Einstein notation is used.

Two dimensions

In two dimensions, when all i, j, m, n each take the values 1 and 2:[3]

(1)
(2)
(3)

Three dimensions

Index and symbol values

In three dimensions, when all i, j, k, m, n each take values 1, 2, and 3:[3]

(4)
(5)
(6)

Product

The Levi-Civita symbol is related to the Kronecker delta. In three dimensions, the relationship is given by the following equations (vertical lines denote the determinant):[4]

A special case of this result occurs when one of the indices is repeated and summed over:

In Einstein notation, the duplication of the i index implies the sum on i. The previous is then denoted εijkεimn = δjmδknδjnδkm.

If two indices are repeated (and summed over), this further reduces to:

n dimensions

Index and symbol values

In n dimensions, when all i1, ...,in, j1, ..., jn take values 1, 2, ..., n:[citation needed]

(7)
(8)
(9)

where the exclamation mark (!) denotes the factorial, and δα...
β...
is the generalized Kronecker delta. For any n, the property

follows from the facts that

  • every permutation is either even or odd,
  • (+1)2 = (−1)2 = 1, and
  • the number of permutations of any n-element set number is exactly n!.

The particular case of (8) with is

Product

In general, for n dimensions, one can write the product of two Levi-Civita symbols as: Proof: Both sides change signs upon switching two indices, so without loss of generality assume . If some then left side is zero, and right side is also zero since two of its rows are equal. Similarly for . Finally, if , then both sides are 1.

Proofs

For (1), both sides are antisymmetric with respect of ij and mn. We therefore only need to consider the case ij and mn. By substitution, we see that the equation holds for ε12ε12, that is, for i = m = 1 and j = n = 2. (Both sides are then one). Since the equation is antisymmetric in ij and mn, any set of values for these can be reduced to the above case (which holds). The equation thus holds for all values of ij and mn.

Using (1), we have for (2)

Here we used the Einstein summation convention with i going from 1 to 2. Next, (3) follows similarly from (2).

To establish (5), notice that both sides vanish when ij. Indeed, if ij, then one can not choose m and n such that both permutation symbols on the left are nonzero. Then, with i = j fixed, there are only two ways to choose m and n from the remaining two indices. For any such indices, we have

(no summation), and the result follows.

Then (6) follows since 3! = 6 and for any distinct indices i, j, k taking values 1, 2, 3, we have

 (no summation, distinct i, j, k)

Applications and examples

Determinants

In linear algebra, the determinant of a 3 × 3 square matrix A = [aij] can be written[6]

Similarly the determinant of an n × n matrix A = [aij] can be written as[5]

where each ir should be summed over 1, ..., n, or equivalently:

where now each ir and each jr should be summed over 1, ..., n. More generally, we have the identity[5]

Vector cross product

Cross product (two vectors)

Let a positively oriented orthonormal basis of a vector space. If (a1, a2, a3) and (b1, b2, b3) are the coordinates of the vectors a and b in this basis, then their cross product can be written as a determinant:[5]

hence also using the Levi-Civita symbol, and more simply:

In Einstein notation, the summation symbols may be omitted, and the ith component of their cross product equals[4]

The first component is

then by cyclic permutations of 1, 2, 3 the others can be derived immediately, without explicitly calculating them from the above formulae:

Triple scalar product (three vectors)

From the above expression for the cross product, we have:

.

If c = (c1, c2, c3) is a third vector, then the triple scalar product equals

From this expression, it can be seen that the triple scalar product is antisymmetric when exchanging any pair of arguments. For example,

.

Curl (one vector field)

If F = (F1, F2, F3) is a vector field defined on some open set of as a function of position x = (x1, x2, x3) (using Cartesian coordinates). Then the ith component of the curl of F equals[4]

which follows from the cross product expression above, substituting components of the gradient vector operator (nabla).

Tensor density

In any arbitrary curvilinear coordinate system and even in the absence of a metric on the manifold, the Levi-Civita symbol as defined above may be considered to be a tensor density field in two different ways. It may be regarded as a contravariant tensor density of weight +1 or as a covariant tensor density of weight −1. In n dimensions using the generalized Kronecker delta,[7][8]

Notice that these are numerically identical. In particular, the sign is the same.

Levi-Civita tensors

On a pseudo-Riemannian manifold, one may define a coordinate-invariant covariant tensor field whose coordinate representation agrees with the Levi-Civita symbol wherever the coordinate system is such that the basis of the tangent space is orthonormal with respect to the metric and matches a selected orientation. This tensor should not be confused with the tensor density field mentioned above. The presentation in this section closely follows Carroll 2004.

The covariant Levi-Civita tensor (also known as the Riemannian volume form) in any coordinate system that matches the selected orientation is

where gab is the representation of the metric in that coordinate system. We can similarly consider a contravariant Levi-Civita tensor by raising the indices with the metric as usual,

but notice that if the metric signature contains an odd number of negative eigenvalues q, then the sign of the components of this tensor differ from the standard Levi-Civita symbol:[9]

where sgn(det[gab]) = (−1)q, is the usual Levi-Civita symbol discussed in the rest of this article, and we used the definition of the metric determinant in the derivation. More explicitly, when the tensor and basis orientation are chosen such that , we have that .

From this we can infer the identity,

where

is the generalized Kronecker delta.

Example: Minkowski space

In Minkowski space (the four-dimensional spacetime of special relativity), the covariant Levi-Civita tensor is

where the sign depends on the orientation of the basis. The contravariant Levi-Civita tensor is

The following are examples of the general identity above specialized to Minkowski space (with the negative sign arising from the odd number of negatives in the signature of the metric tensor in either sign convention):

See also

Notes

  1. ^ Labelle, P. (2010). Supersymmetry. Demystified. McGraw-Hill. pp. 57–58. ISBN 978-0-07-163641-4.
  2. ^ Hadrovich, F. "Twistor Primer". Retrieved 2013-09-03.
  3. ^ a b c Tyldesley, J. R. (1973). An introduction to Tensor Analysis: For Engineers and Applied Scientists. Longman. ISBN 0-582-44355-5.
  4. ^ a b c d Kay, D. C. (1988). Tensor Calculus. Schaum's Outlines. McGraw Hill. ISBN 0-07-033484-6.
  5. ^ a b c d e Riley, K. F.; Hobson, M. P.; Bence, S. J. (2010). Mathematical Methods for Physics and Engineering. Cambridge University Press. ISBN 978-0-521-86153-3.
  6. ^ Lipcshutz, S.; Lipson, M. (2009). Linear Algebra. Schaum's Outlines (4th ed.). McGraw Hill. ISBN 978-0-07-154352-1.
  7. ^ Murnaghan, F. D. (1925), "The generalized Kronecker symbol and its application to the theory of determinants", Amer. Math. Monthly, 32 (5): 233–241, doi:10.2307/2299191, JSTOR 2299191
  8. ^ Lovelock, David; Rund, Hanno (1989). Tensors, Differential Forms, and Variational Principles. Courier Dover Publications. p. 113. ISBN 0-486-65840-6.
  9. ^ Nakahara, Mikio (2017-01-31). Geometry, Topology and Physics (2 ed.). Boca Raton: CRC Press. doi:10.1201/9781315275826. ISBN 978-1-315-27582-6.

References

This article incorporates material from Levi-Civita permutation symbol on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Read other articles:

34°26′00″N 35°51′00″E / 34.4333°N 35.85°E / 34.4333; 35.85 إيالة طرابلس الشام إيالة طرابلس الشام عام 1609 إحداثيات: 34°26′00″N 35°51′00″E / 34.4333°N 35.85°E / 34.4333; 35.85  البلد الدولة العثمانية   1579 – 1864 التقسيم الإداري إيالة العاصمة طرابلس الشام تعديل مصدري - تعديل   إي�...

العلاقات البرتغالية الليبيرية البرتغال ليبيريا   البرتغال   ليبيريا تعديل مصدري - تعديل   العلاقات البرتغالية الليبيرية هي العلاقات الثنائية التي تجمع بين البرتغال وليبيريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وج

Roshini Roshini (Trichy) is een Indiase playback-zangeres uit de deelstaat Tamil Nadu. Ze zingt liedjes voor Telugu- en Tamil-films. Haar eerste song was voor de film 'Aaha enna porutham' en haar eerste hit was 'Pottu thaakku' in de Tamil-film 'Kuthu'. Andere succesvolle liedjes waren er voor de films 'Pattiya', 'Thaamirabharani' en 'Yaaradi Nee Mohini'. Met haar zuster haalde ze ooit het Guinness Book of World Records door 37 uur nonstop te zingen.

Teile dieses Artikels scheinen seit 2011 nicht mehr aktuell zu sein. Bitte hilf uns dabei, die fehlenden Informationen zu recherchieren und einzufügen. Wikipedia:WikiProjekt Ereignisse/Vergangenheit/2011 Wyatt Crockett Geburtstag 24. Januar 1983 Geburtsort Christchurch, Neuseeland Größe 193 cm Verein Verein Burnside RFC Position Pfeiler Vereine als Aktiver Jahre Verein Spiele (Punkte) Burnside RFC Provinz Provinz Canterbury RFU Position Pfeiler Provinzen als Aktiver Jahre Provinz Spie...

NAMC YS-11YS-11 Japan Air Commuter di Bandar Udara TokushimaTipePesawat penumpangTerbang perdana30 Agustus 1962Diperkenalkan30 Maret 1965DipensiunkanJepang: 30 September 2006Pengguna utamaBiro Penerbangan Kementerian Agraria, Infrastruktur, Transport, dan Pariwisata JepangAngkatan Udara Bela Diri Jepang (masih dioperasikan)Angkatan Laut Bela Diri Jepang (masih dioperasikan)Penjaga Pantai Jepang (masih dioperasikan)All Nippon AirwaysJapan AirlinesJapan Air System Japan Transocean AirJapan Air ...

人見絹枝个人资料罗马拼音Hitomi Kinue所属国家队 日本出生(1907-01-01)1907年1月1日逝世1931年8月2日(1931歲—08—02)(24歲) 日本活跃年代1926年-1931年运动国家/地区 日本运动田徑项目混合運動退役1930年9月成绩与头衔国际性决赛 列表 1926年女子世界運動會:鐵餅第二名 1926年女子世界運動會:立定跳遠第一名 1926年女子世界運動會:跳遠第一名 1926年女子世界運動會:100

Universiteit Twente Dit is een lijst van alle eredoctoraten van de Universiteit Twente. Eredoctoraten worden in Twente sinds 1981 uitgereikt, aan personen die een uitzonderlijke prestatie hebben geleverd in de wetenschap of op maatschappelijk gebied, zonder dat daarover verslag is gelegd in een proefschrift.[1] Twee van de eredoctores ontvingen ook de Nobelprijs voor Scheikunde: Fraser Stoddart (h.c. 2006) en Lehn (h.c. 1991). Jaar Naam Portret Vakgebied 2021 Jaya Baloo [2] di...

Роб Едвардс Особисті дані Повне ім'я Роберт Оуен Едвардс Народження 25 грудня 1982(1982-12-25) (40 років)   Телфорд (Англія), Шропшир, Англія, Велика Британія Зріст 185 Вага 74 кг Громадянство Позиція центральний захисник Інформація про клуб Поточний клуб Лутон Таун Юнацькі к

Tiffany Yuen袁嘉蔚Wakil Ketua DemosistōMasa jabatan4 Desember 2017 – 12 Mei 2018PendahuluOscar LaiPenggantiIsaac ChengAnggota Dewan Distrik SelatanPetahanaMulai menjabat 1 Januari 2020PendahuluChan Fu-mingDaerah pemilihanTin Wan Informasi pribadiLahir30 September 1993 (umur 30)Hong Kong BritaniaPartai politikIndependentDemosistō (2016–18)Alma materCity University of Hong KongSunting kotak info • L • B Tiffany Yuen Hanzi tradisional: 袁嘉蔚 Hanzi sed...

此條目需要擴充。 (2014年9月20日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此條目需要补充更多来源。 (2014年9月20日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:陳瑞光 (臺灣) — 网页、新闻、书籍、学术、图像�...

Public school (u.s.) schoolSam Houston Math, Science and Technology CenterAddress9400 Irvington BlvdHouston, Texas 77076Coordinates29°50′51″N 95°21′37″W / 29.84750°N 95.36028°W / 29.84750; -95.36028InformationTypePublic school (U.S.)Founded1878PrincipalAlan SummersStaff153.66 (FTE)[1]Grades9 - 12Enrollment2,795 (2017-18)[1]Student to teacher ratio18.19[1]Campus typeUrbanColor(s)   MascotTigerFeeder schoolsBurbank Middle Sch...

Awards presented by the American Film Institute American Film Institute AwardsAwarded forTop films and television programsCountryUnited StatesPresented byAmerican Film InstituteFirst awarded2000Websitewww.afi.com/afiawards The American Film Institute Awards (also known as the AFI Awards) are awards presented by the American Film Institute to recognize the top 10 films and television programs of the year. Unlike other accolades about the art form, the AFI Awards acknowledge the film and televi...

16th century Serbian Orthodox monastery, Bosnia and Herzegovina Church of the Ozren Monastery The Ozren Monastery (Serbian: Манастир Озрен, romanized: Manastir Ozren) is a Serbian Orthodox monastery dedicated to Saint Nicholas and located 6 kilometres from the town of Petrovo in northern Republika Srpska, Bosnia and Herzegovina. It is the spiritual centre of the area of Mount Ozren.[1] It was probably founded in the second half of the 16th century,[1] ...

American historian, philosopher and writer (1885–1981) For other uses, see William Durant. William DurantDurant in 1967BornWilliam James Durant(1885-11-05)November 5, 1885North Adams, Massachusetts, U.S.DiedNovember 7, 1981(1981-11-07) (aged 96)Los Angeles, CaliforniaOccupation Historian writer philosopher teacher EducationSaint Peter's College (BA, 1907)Columbia University (PhD, 1917)GenreNon-fictionSubjectHistory, philosophy, religionSpouse Ariel Kaufman ​(m. 1913&...

A type of scam targeting citizens of the United States An SSA impersonation scam, or SSA scam, is a class of telecommunications fraud and scam which targets citizens of the United States by impersonating personnel of the Social Security Administration. SSA scams are typically initiated by pre-recorded messages, or robocalls, which are designed to panic the victim so that they follow the scammer's instructions. In 2018, over 35,000 incidences[spelling?] of SSA scam robocalls were repor...

David and Jonathan, (Daud dan Yonatan) lukisan Rembrandt. Yonatan memakai serban.[1] Yonatan (bahasa Ibrani: יְהוֹנָתָן, Modern Yehonatan Tiberias Yəhōnāṯān atau Ibrani: יוֹנָתָן, Yonatan; bahasa Inggris: Jonathan) adalah tokoh pahlawan Israel yang dicatat dalam Kitab 1 Samuel dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Ia adalah salah satu dari 4 putra dari raja Saul dan sahabat karib raja Daud. Persahabatan antara Daud dan Y...

Former New Jersey Transit rail station, Little Falls, NJ USA Great NotchThe station on December 19, 2009, a month prior to closing.General informationCoordinates40°52′26″N 74°12′21″W / 40.8738°N 74.2058°W / 40.8738; -74.2058Owned byNew Jersey TransitPlatforms1 side platformTracks1 track, 1 sidingConnectionsNJT Bus: 191, 195, and 705ConstructionPlatform levelsGroundParkingunder 20[1]Bicycle facilitiesNoOther informationStation code1747 (Erie Railroad...

TV series or program The Donlon ReportPresented byJoe DonlonProductionProduction locationsWGN-TV Studios, ChicagoRunning time60 minutesProduction companyNexstar Media GroupOriginal releaseNetworkNewsNationReleaseMarch 1, 2021 (2021-03-01) –March 25, 2022 (2022-03-25) The Donlon Report was a nightly American television news program on NewsNation, which premiered on March 1, 2021. The one-hour-long program was hosted by Joe Donlon, and aired at 6 p.m. ET.[1] The cable n...

Lista de prêmios Steven Spielberg Spielberg na estréia do filme Ready Player One (2017) Prêmio vitórias Nomeações Prêmios da Academia 3 22 Prêmios da Academia Britânica de Cinema 2 14 Prêmios Emmy 12 27 Prêmios Globo de Ouro 9 24 Total 155 314 A seguir está uma lista de prêmios e indicações recebidos pelo cineasta americano Steven Spielberg. Spielberg é um diretor de cinema, produtor e roteirista americano. Ele começou sua carreira na era da Nova Hollywood e atualmente é o d...

Questa voce sull'argomento calciatori emiratini è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Hassan Ibrahim Nazionalità  Emirati Arabi Uniti Altezza 183 cm Peso 76 kg Calcio Ruolo Difensore Squadra  Al-Wasl Carriera Squadre di club1 2010-2017 Al Shabab114 (3)2017-2020 Al-Ahli25 (0)2020- Al-Wasl59 (0) Nazionale 2014- Emirati Arabi Uniti8 (0) Palmarès  Coppa d'Asia Bronz...