Twistor theory

In theoretical physics, twistor theory was proposed by Roger Penrose in 1967[1] as a possible path[2] to quantum gravity and has evolved into a widely studied branch of theoretical and mathematical physics. Penrose's idea was that twistor space should be the basic arena for physics from which space-time itself should emerge. It has led to powerful mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory, and in physics to general relativity, quantum field theory, and the theory of scattering amplitudes.

Twistor theory arose in the context of the rapidly expanding mathematical developments in Einstein's theory of general relativity in the late 1950s and in the 1960s and carries a number of influences from that period. In particular, Roger Penrose has credited Ivor Robinson as an important early influence in the development of twistor theory, through his construction of so-called Robinson congruences.[3]

Overview

Projective twistor space is projective 3-space , the simplest 3-dimensional compact algebraic variety. It has a physical interpretation as the space of massless particles with spin. It is the projectivisation of a 4-dimensional complex vector space, non-projective twistor space , with a Hermitian form of signature (2, 2) and a holomorphic volume form. This can be most naturally understood as the space of chiral (Weyl) spinors for the conformal group of Minkowski space; it is the fundamental representation of the spin group of the conformal group. This definition can be extended to arbitrary dimensions except that beyond dimension four, one defines projective twistor space to be the space of projective pure spinors[4][5] for the conformal group.[6][7]

In its original form, twistor theory encodes physical fields on Minkowski space in terms of complex analytic objects on twistor space via the Penrose transform. This is especially natural for massless fields of arbitrary spin. In the first instance these are obtained via contour integral formulae in terms of free holomorphic functions on regions in twistor space. The holomorphic twistor functions that give rise to solutions to the massless field equations can be more deeply understood as Čech representatives of analytic cohomology classes on regions in . These correspondences have been extended to certain nonlinear fields, including self-dual gravity in Penrose's nonlinear graviton construction[8] and self-dual Yang–Mills fields in the so-called Ward construction;[9] the former gives rise to deformations of the underlying complex structure of regions in , and the latter to certain holomorphic vector bundles over regions in . These constructions have had wide applications, including inter alia the theory of integrable systems.[10][11][12]

The self-duality condition is a major limitation for incorporating the full nonlinearities of physical theories, although it does suffice for Yang–Mills–Higgs monopoles and instantons (see ADHM construction).[13] An early attempt to overcome this restriction was the introduction of ambitwistors by Isenberg, Yasskin and Green,[14] and their superspace extension, super-ambitwistors, by Edward Witten.[15] Ambitwistor space is the space of complexified light rays or massless particles and can be regarded as a complexification or cotangent bundle of the original twistor description. By extending the ambitwistor correspondence to suitably defined formal neighborhoods, Isenberg, Yasskin and Green[14] showed the equivalence between the vanishing of the curvature along such extended null lines and the full Yang–Mills field equations.[14] Witten[15] showed that a further extension, within the framework of super Yang–Mills theory, including fermionic and scalar fields, gave rise, in the case of N = 1 or 2 supersymmetry, to the constraint equations, while for N = 3 (or 4), the vanishing condition for supercurvature along super null lines (super ambitwistors) implied the full set of field equations, including those for the fermionic fields. This was subsequently shown to give a 1-1[clarify] equivalence between the null curvature constraint equations and the supersymmetric Yang-Mills field equations.[16][17] Through dimensional reduction, it may also be deduced from the analogous super-ambitwistor correspondence for 10-dimensional, N = 1 super-Yang–Mills theory.[18][19]

Twistorial formulae for interactions beyond the self-dual sector also arose in Witten's twistor string theory,[20] which is a quantum theory of holomorphic maps of a Riemann surface into twistor space. This gave rise to the remarkably compact RSV (Roiban, Spradlin and Volovich) formulae for tree-level S-matrices of Yang–Mills theories,[21] but its gravity degrees of freedom gave rise to a version of conformal supergravity limiting its applicability; conformal gravity is an unphysical theory containing ghosts, but its interactions are combined with those of Yang–Mills theory in loop amplitudes calculated via twistor string theory.[22]

Despite its shortcomings, twistor string theory led to rapid developments in the study of scattering amplitudes. One was the so-called MHV formalism[23] loosely based on disconnected strings, but was given a more basic foundation in terms of a twistor action for full Yang–Mills theory in twistor space.[24] Another key development was the introduction of BCFW recursion.[25] This has a natural formulation in twistor space[26][27] that in turn led to remarkable formulations of scattering amplitudes in terms of Grassmann integral formulae[28][29] and polytopes.[30] These ideas have evolved more recently into the positive Grassmannian[31] and amplituhedron.

Twistor string theory was extended first by generalising the RSV Yang–Mills amplitude formula, and then by finding the underlying string theory. The extension to gravity was given by Cachazo & Skinner,[32] and formulated as a twistor string theory for maximal supergravity by David Skinner.[33] Analogous formulae were then found in all dimensions by Cachazo, He and Yuan for Yang–Mills theory and gravity[34] and subsequently for a variety of other theories.[35] They were then understood as string theories in ambitwistor space by Mason and Skinner[36] in a general framework that includes the original twistor string and extends to give a number of new models and formulae.[37][38][39] As string theories they have the same critical dimensions as conventional string theory; for example the type II supersymmetric versions are critical in ten dimensions and are equivalent to the full field theory of type II supergravities in ten dimensions (this is distinct from conventional string theories that also have a further infinite hierarchy of massive higher spin states that provide an ultraviolet completion). They extend to give formulae for loop amplitudes[40][41] and can be defined on curved backgrounds.[42]

The twistor correspondence

Denote Minkowski space by , with coordinates and Lorentzian metric signature . Introduce 2-component spinor indices and set

Non-projective twistor space is a four-dimensional complex vector space with coordinates denoted by where and are two constant Weyl spinors. The hermitian form can be expressed by defining a complex conjugation from to its dual by so that the Hermitian form can be expressed as

This together with the holomorphic volume form, is invariant under the group SU(2,2), a quadruple cover of the conformal group C(1,3) of compactified Minkowski spacetime.

Points in Minkowski space are related to subspaces of twistor space through the incidence relation

The incidence relation is preserved under an overall re-scaling of the twistor, so usually one works in projective twistor space which is isomorphic as a complex manifold to . A point thereby determines a line in parametrised by A twistor is easiest understood in space-time for complex values of the coordinates where it defines a totally null two-plane that is self-dual. Take to be real, then if vanishes, then lies on a light ray, whereas if is non-vanishing, there are no solutions, and indeed then corresponds to a massless particle with spin that are not localised in real space-time.

Variations

Supertwistors

Supertwistors are a supersymmetric extension of twistors introduced by Alan Ferber in 1978.[43] Non-projective twistor space is extended by fermionic coordinates where is the number of supersymmetries so that a twistor is now given by with anticommuting. The super conformal group naturally acts on this space and a supersymmetric version of the Penrose transform takes cohomology classes on supertwistor space to massless supersymmetric multiplets on super Minkowski space. The case provides the target for Penrose's original twistor string and the case is that for Skinner's supergravity generalisation.

Higher dimensional generalization of the Klein correspondence

A higher dimensional generalization of the Klein correspondence underlying twistor theory, applicable to isotropic subspaces of conformally compactified (complexified) Minkowski space and its super-space extensions, was developed by J. Harnad and S. Shnider.[4][5]

Hyperkähler manifolds

Hyperkähler manifolds of dimension also admit a twistor correspondence with a twistor space of complex dimension .[44]

Palatial twistor theory

The nonlinear graviton construction encodes only anti-self-dual, i.e., left-handed fields.[8] A first step towards the problem of modifying twistor space so as to encode a general gravitational field is the encoding of right-handed fields. Infinitesimally, these are encoded in twistor functions or cohomology classes of homogeneity −6. The task of using such twistor functions in a fully nonlinear way so as to obtain a right-handed nonlinear graviton has been referred to as the (gravitational) googly problem.[45] (The word "googly" is a term used in the game of cricket for a ball bowled with right-handed helicity using the apparent action that would normally give rise to left-handed helicity.) The most recent proposal in this direction by Penrose in 2015 was based on noncommutative geometry on twistor space and referred to as palatial twistor theory.[46] The theory is named after Buckingham Palace, where Michael Atiyah[47] suggested to Penrose the use of a type of "noncommutative algebra", an important component of the theory. (The underlying twistor structure in palatial twistor theory was modeled not on the twistor space but on the non-commutative holomorphic twistor quantum algebra.)

See also

Notes

  1. ^ Penrose, R. (1967). "Twistor Algebra". Journal of Mathematical Physics. 8 (2): 345–366. Bibcode:1967JMP.....8..345P. doi:10.1063/1.1705200.
  2. ^ Penrose, R.; MacCallum, M.A.H. (1973). "Twistor theory: An approach to the quantisation of fields and space-time". Physics Reports. 6 (4): 241–315. Bibcode:1973PhR.....6..241P. doi:10.1016/0370-1573(73)90008-2.
  3. ^ Penrose, Roger (1987). "On the Origins of Twistor Theory". In Rindler, Wolfgang; Trautman, Andrzej (eds.). Gravitation and Geometry, a Volume in Honour of Ivor Robinson. Bibliopolis. ISBN 88-7088-142-3.
  4. ^ a b Harnad, J.; Shnider, S. (1992). "Isotropic geometry and twistors in higher dimensions. I. The generalized Klein correspondence and spinor flags in even dimensions". Journal of Mathematical Physics. 33 (9): 3197–3208. Bibcode:1992JMP....33.3197H. doi:10.1063/1.529538.
  5. ^ a b Harnad, J.; Shnider, S. (1995). "Isotropic geometry and twistors in higher dimensions. II. Odd dimensions, reality conditions, and twistor superspaces". Journal of Mathematical Physics. 36 (9): 1945–1970. Bibcode:1995JMP....36.1945H. doi:10.1063/1.531096.
  6. ^ Penrose, Roger; Rindler, Wolfgang (1986). Spinors and Space-Time. Cambridge University Press. pp. Appendix. doi:10.1017/cbo9780511524486. ISBN 9780521252676.
  7. ^ Hughston, L. P.; Mason, L. J. (1988). "A generalised Kerr-Robinson theorem". Classical and Quantum Gravity. 5 (2): 275. Bibcode:1988CQGra...5..275H. doi:10.1088/0264-9381/5/2/007. ISSN 0264-9381. S2CID 250783071.
  8. ^ a b Penrose, R. (1976). "Non-linear gravitons and curved twistor theory". Gen. Rel. Grav. 7 (1): 31–52. Bibcode:1976GReGr...7...31P. doi:10.1007/BF00762011. S2CID 123258136.
  9. ^ Ward, R. S. (1977). "On self-dual gauge fields". Physics Letters A. 61 (2): 81–82. Bibcode:1977PhLA...61...81W. doi:10.1016/0375-9601(77)90842-8.
  10. ^ Ward, R. S. (1990). Twistor geometry and field theory. Wells, R. O. Cambridge [England]: Cambridge University Press. ISBN 978-0521422680. OCLC 17260289.
  11. ^ Mason, Lionel J.; Woodhouse, Nicholas M. J. (1996). Integrability, self-duality, and twistor theory. Oxford: Clarendon Press. ISBN 9780198534983. OCLC 34545252.
  12. ^ Dunajski, Maciej (2010). Solitons, instantons, and twistors. Oxford: Oxford University Press. ISBN 9780198570622. OCLC 507435856.
  13. ^ Atiyah, M. F.; Hitchin, N. J.; Drinfeld, V. G.; Manin, Yu. I. (1978). "Construction of instantons". Physics Letters A. 65 (3): 185–187. Bibcode:1978PhLA...65..185A. doi:10.1016/0375-9601(78)90141-x.
  14. ^ a b c Isenberg, James; Yasskin, Philip B.; Green, Paul S. (1978). "Non-self-dual gauge fields". Physics Letters B. 78 (4): 462–464. Bibcode:1978PhLB...78..462I. doi:10.1016/0370-2693(78)90486-0.
  15. ^ a b Witten, Edward (1978). "An interpretation of classical Yang–Mills theory". Physics Letters B. 77 (4–5): 394–398. Bibcode:1978PhLB...77..394W. doi:10.1016/0370-2693(78)90585-3.
  16. ^ Harnad, J.; Légaré, M.; Hurtubise, J.; Shnider, S. (1985). "Constraint equations and field equations in supersymmetric N = 3 Yang-Mills theory". Nuclear Physics B. 256: 609–620. Bibcode:1985NuPhB.256..609H. doi:10.1016/0550-3213(85)90410-9.
  17. ^ Harnad, J.; Hurtubise, J.; Shnider, S. (1989). "Supersymmetric Yang-Mills equations and supertwistors". Annals of Physics. 193 (1): 40–79. Bibcode:1989AnPhy.193...40H. doi:10.1016/0003-4916(89)90351-5.
  18. ^ Witten, E. (1986). "Twistor-like transform in ten dimensions". Nuclear Physics. B266 (2): 245–264. Bibcode:1986NuPhB.266..245W. doi:10.1016/0550-3213(86)90090-8.
  19. ^ Harnad, J.; Shnider, S. (1986). "Constraints and Field Equations for Ten Dimensional Super Yang-Mills Theory". Commun. Math. Phys. 106 (2): 183–199. Bibcode:1986CMaPh.106..183H. doi:10.1007/BF01454971. S2CID 122622189.
  20. ^ Witten, Edward (2004). "Perturbative Gauge Theory as a String Theory in Twistor Space". Communications in Mathematical Physics. 252 (1–3): 189–258. arXiv:hep-th/0312171. Bibcode:2004CMaPh.252..189W. doi:10.1007/s00220-004-1187-3. S2CID 14300396.
  21. ^ Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia (2004-07-30). "Tree-level S matrix of Yang–Mills theory". Physical Review D. 70 (2): 026009. arXiv:hep-th/0403190. Bibcode:2004PhRvD..70b6009R. doi:10.1103/PhysRevD.70.026009. S2CID 10561912.
  22. ^ Berkovits, Nathan; Witten, Edward (2004). "Conformal supergravity in twistor-string theory". Journal of High Energy Physics. 2004 (8): 009. arXiv:hep-th/0406051. Bibcode:2004JHEP...08..009B. doi:10.1088/1126-6708/2004/08/009. ISSN 1126-6708. S2CID 119073647.
  23. ^ Cachazo, Freddy; Svrcek, Peter; Witten, Edward (2004). "MHV vertices and tree amplitudes in gauge theory". Journal of High Energy Physics. 2004 (9): 006. arXiv:hep-th/0403047. Bibcode:2004JHEP...09..006C. doi:10.1088/1126-6708/2004/09/006. ISSN 1126-6708. S2CID 16328643.
  24. ^ Adamo, Tim; Bullimore, Mathew; Mason, Lionel; Skinner, David (2011). "Scattering amplitudes and Wilson loops in twistor space". Journal of Physics A: Mathematical and Theoretical. 44 (45): 454008. arXiv:1104.2890. Bibcode:2011JPhA...44S4008A. doi:10.1088/1751-8113/44/45/454008. S2CID 59150535.
  25. ^ Britto, Ruth; Cachazo, Freddy; Feng, Bo; Witten, Edward (2005-05-10). "Direct Proof of the Tree-Level Scattering Amplitude Recursion Relation in Yang–Mills Theory". Physical Review Letters. 94 (18): 181602. arXiv:hep-th/0501052. Bibcode:2005PhRvL..94r1602B. doi:10.1103/PhysRevLett.94.181602. PMID 15904356. S2CID 10180346.
  26. ^ Mason, Lionel; Skinner, David (2010-01-01). "Scattering amplitudes and BCFW recursion in twistor space". Journal of High Energy Physics. 2010 (1): 64. arXiv:0903.2083. Bibcode:2010JHEP...01..064M. doi:10.1007/JHEP01(2010)064. ISSN 1029-8479. S2CID 8543696.
  27. ^ Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J. (2010-03-01). "The S-matrix in twistor space". Journal of High Energy Physics. 2010 (3): 110. arXiv:0903.2110. Bibcode:2010JHEP...03..110A. doi:10.1007/JHEP03(2010)110. ISSN 1029-8479. S2CID 15898218.
  28. ^ Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J. (2010-03-01). "A duality for the S matrix". Journal of High Energy Physics. 2010 (3): 20. arXiv:0907.5418. Bibcode:2010JHEP...03..020A. doi:10.1007/JHEP03(2010)020. ISSN 1029-8479. S2CID 5771375.
  29. ^ Mason, Lionel; Skinner, David (2009). "Dual superconformal invariance, momentum twistors and Grassmannians". Journal of High Energy Physics. 2009 (11): 045. arXiv:0909.0250. Bibcode:2009JHEP...11..045M. doi:10.1088/1126-6708/2009/11/045. ISSN 1126-6708. S2CID 8375814.
  30. ^ Hodges, Andrew (2013-05-01). "Eliminating spurious poles from gauge-theoretic amplitudes". Journal of High Energy Physics. 2013 (5): 135. arXiv:0905.1473. Bibcode:2013JHEP...05..135H. doi:10.1007/JHEP05(2013)135. ISSN 1029-8479. S2CID 18360641.
  31. ^ Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy; Goncharov, Alexander B.; Postnikov, Alexander; Trnka, Jaroslav (2012-12-21). "Scattering Amplitudes and the Positive Grassmannian". arXiv:1212.5605 [hep-th].
  32. ^ Cachazo, Freddy; Skinner, David (2013-04-16). "Gravity from Rational Curves in Twistor Space". Physical Review Letters. 110 (16): 161301. arXiv:1207.0741. Bibcode:2013PhRvL.110p1301C. doi:10.1103/PhysRevLett.110.161301. PMID 23679592. S2CID 7452729.
  33. ^ Skinner, David (2013-01-04). "Twistor Strings for N = 8 Supergravity". arXiv:1301.0868 [hep-th].
  34. ^ Cachazo, Freddy; He, Song; Yuan, Ellis Ye (2014-07-01). "Scattering of massless particles: scalars, gluons and gravitons". Journal of High Energy Physics. 2014 (7): 33. arXiv:1309.0885. Bibcode:2014JHEP...07..033C. doi:10.1007/JHEP07(2014)033. ISSN 1029-8479. S2CID 53685436.
  35. ^ Cachazo, Freddy; He, Song; Yuan, Ellis Ye (2015-07-01). "Scattering equations and matrices: from Einstein to Yang–Mills, DBI and NLSM". Journal of High Energy Physics. 2015 (7): 149. arXiv:1412.3479. Bibcode:2015JHEP...07..149C. doi:10.1007/JHEP07(2015)149. ISSN 1029-8479. S2CID 54062406.
  36. ^ Mason, Lionel; Skinner, David (2014-07-01). "Ambitwistor strings and the scattering equations". Journal of High Energy Physics. 2014 (7): 48. arXiv:1311.2564. Bibcode:2014JHEP...07..048M. doi:10.1007/JHEP07(2014)048. ISSN 1029-8479. S2CID 53666173.
  37. ^ Berkovits, Nathan (2014-03-01). "Infinite tension limit of the pure spinor superstring". Journal of High Energy Physics. 2014 (3): 17. arXiv:1311.4156. Bibcode:2014JHEP...03..017B. doi:10.1007/JHEP03(2014)017. ISSN 1029-8479. S2CID 28346354.
  38. ^ Geyer, Yvonne; Lipstein, Arthur E.; Mason, Lionel (2014-08-19). "Ambitwistor Strings in Four Dimensions". Physical Review Letters. 113 (8): 081602. arXiv:1404.6219. Bibcode:2014PhRvL.113h1602G. doi:10.1103/PhysRevLett.113.081602. PMID 25192087. S2CID 40855791.
  39. ^ Casali, Eduardo; Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Roehrig, Kai A. (2015-11-01). "New ambitwistor string theories". Journal of High Energy Physics. 2015 (11): 38. arXiv:1506.08771. Bibcode:2015JHEP...11..038C. doi:10.1007/JHEP11(2015)038. ISSN 1029-8479. S2CID 118801547.
  40. ^ Adamo, Tim; Casali, Eduardo; Skinner, David (2014-04-01). "Ambitwistor strings and the scattering equations at one loop". Journal of High Energy Physics. 2014 (4): 104. arXiv:1312.3828. Bibcode:2014JHEP...04..104A. doi:10.1007/JHEP04(2014)104. ISSN 1029-8479. S2CID 119194796.
  41. ^ Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr (2015-09-16). "Loop Integrands for Scattering Amplitudes from the Riemann Sphere". Physical Review Letters. 115 (12): 121603. arXiv:1507.00321. Bibcode:2015PhRvL.115l1603G. doi:10.1103/PhysRevLett.115.121603. PMID 26430983. S2CID 36625491.
  42. ^ Adamo, Tim; Casali, Eduardo; Skinner, David (2015-02-01). "A worldsheet theory for supergravity". Journal of High Energy Physics. 2015 (2): 116. arXiv:1409.5656. Bibcode:2015JHEP...02..116A. doi:10.1007/JHEP02(2015)116. ISSN 1029-8479. S2CID 119234027.
  43. ^ Ferber, A. (1978), "Supertwistors and conformal supersymmetry", Nuclear Physics B, 132 (1): 55–64, Bibcode:1978NuPhB.132...55F, doi:10.1016/0550-3213(78)90257-2.
  44. ^ Hitchin, N. J.; Karlhede, A.; Lindström, U.; Roček, M. (1987). "Hyper-Kähler metrics and supersymmetry". Communications in Mathematical Physics. 108 (4): 535–589. Bibcode:1987CMaPh.108..535H. doi:10.1007/BF01214418. ISSN 0010-3616. MR 0877637. S2CID 120041594.
  45. ^ Penrose 2004, p. 1000.
  46. ^ Penrose, Roger (2015). "Palatial twistor theory and the twistor googly problem". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373 (2047): 20140237. Bibcode:2015RSPTA.37340237P. doi:10.1098/rsta.2014.0237. PMID 26124255. S2CID 13038470.
  47. ^ "Michael Atiyah's Imaginative State of Mind"Quanta Magazine

References

  • Roger Penrose (2004), The Road to Reality, Alfred A. Knopf, ch. 33, pp. 958–1009.
  • Roger Penrose and Wolfgang Rindler (1984), Spinors and Space-Time; vol. 1, Two-Spinor Calculus and Relativitic Fields, Cambridge University Press, Cambridge.
  • Roger Penrose and Wolfgang Rindler (1986), Spinors and Space-Time; vol. 2, Spinor and Twistor Methods in Space-Time Geometry, Cambridge University Press, Cambridge.

Further reading

Read other articles:

Pour les articles homonymes, voir Balde et Alleman. Jean BaldeBiographieNaissance 14 mars 1885BordeauxDécès 4 mai 1938 (à 53 ans)LatresneNom de naissance Jeanne Marie Bernarde AllemanPseudonyme Jean BaldeNationalité françaiseActivités Écrivaine, poétesseAutres informationsDistinctions Prix Archon-Despérouses (1909)Grand prix du roman de l'Académie française (1928)Chevalier de la Légion d'honneur‎Signaturemodifier - modifier le code - modifier Wikidata Dédicace autographe ...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2020) كتاب جوتنبرج السنوي كتاب جوتنبرج السنوي عنوان مختصر (أيزو 4) Gutenberg-Jahrb. الموضوع تاريخ الطباعة اللغة متعدد اللغات المحررون Stephan Füssel تفاصيل النشر الناشر Internationale...

 

 

Untuk kegunaan lain, lihat Huygens dan Huygens. Christiaan HuygensChristiaan HuygensLahir14 April 1629Den Haag, BelandaMeninggal8 Juli 1695 (umur 66)BelandaKebangsaanBelanda PrancisAlmamaterUniversitas LeidenCollege of OrangeDikenal atasTitanJam PendulumHuygens–Fresnel principleWave theoryKarier ilmiahBidangFisika Matematika Astronomi HorologiInstitusiRoyal Society of LondonFrench Academy of SciencesPembimbing doktoralFrans van SchootenJohn PellTerinspirasiRené DescartesFrans van SchootenM...

Putative CO2 gas and dust eruptions on Mars Artist concept showing sand-laden jets erupting from Martian geysers. (Published by NASA; artist: Ron Miller.) Dark dune spots Martian geysers (or CO2 jets) are putative sites of small gas and dust eruptions that occur in the south polar region of Mars during the spring thaw. Dark dune spots and spiders – or araneiforms[1] – are the two most visible types of features ascribed to these eruptions. Martian geysers are distinct from geysers...

 

 

Art museum in Baltimore, Maryland, US This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Walters Art Museum – news · newspapers · books · scholar · JSTOR (April 2021) (Learn how and when to remove this template message) The Walters Art MuseumMuseum entrance, North Charles Street, BaltimoreInteractive fullscreen...

 

 

Babak gugur Copa América 2021 dimulai pada 2 Juli 2021 dengan babak perempat final dan berakhir pada 10 Juli 2021 dengan pertandingan final di Estádio do Maracanã di Rio de Janeiro.[1] Awalnya, babak gugur dijadwalkan akan dimainkan dari 4 hingga 12 Juli 2020.[2][3] Namun, pada 17 Maret 2020 turnamen tersebut ditunda hingga tahun 2021 karena pandemi COVID-19 di Amerika Selatan.[4] Seluruh waktu pertandingan dalam BRT (UTC−3).[5] Format Dalam babak ...

In this Burmese name, Saya is an honorific, not a given name. In this Burmese name, the given name is Chone. There is no family name. Saya ChoneBorn1866 (1866)Died1917 (aged 50–51)NationalityBurmeseKnown forPaintingMovementTraditional Burmese painting Saya Chone (Burmese: ဆရာချုံ, 1866–1917) was a prominent Burmese painter based in Mandalay. He served as a royal court painter during the reign of King Thibaw Min, the last monarch of the Konbaung dynasty. Af...

 

 

Cet article est une ébauche concernant le Rwanda. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. 2007 au Rwanda - 2008 au Rwanda - 2009 au Rwanda - 2010 au Rwanda - 2011 au Rwanda 2007 par pays en Afrique - 2008 par pays en Afrique - 2009 par pays en Afrique - 2010 par pays en Afrique - 2011 par pays en Afrique] Chronologies Données clés 2006 2007 2008  2009  2010 2011 2012Décennies :1970 198...

 

 

迪奥斯达多·马卡帕加尔Diosdado Pangan Macapagal第9任菲律賓總統任期1961年12月30日—1965年12月30日前任卡洛斯·P·加西亚继任费迪南德·马科斯第6任菲律賓副總統任期1957年12月30日—1961年12月30日前任卡洛斯·P·加西亚继任伊曼纽尔·佩莱斯 个人资料出生(1910-09-28)1910年9月28日 美屬菲律賓馬尼拉逝世1997年4月21日(1997歲—04—21)(86歲) 菲律賓馬卡迪墓地 菲律賓馬卡迪達義市英...

Economic theory Not to be confused with China's Social Credit System for trustworthiness. Part of a series onEconomic systems Major types Capitalism Socialism Communism By ideology Associative Capitalist Corporate Democratic Laissez-faire Mercantilist Neoliberal Neomercantilist Protectionist Social market State Welfare Democratic Fascist Feminist Georgist Green Religious Buddhist economics Christian Sabbath economics Islamic Socialist Anarchist Communalist Communist Market socialist Mutualist...

 

 

Walking as a hobby, sport, or leisure activity For other uses, see Hiking (sailing) and Backpacking (wilderness). Hiking in the San Juan Mountains, Colorado A hiker enjoying the view of the Alps Hiking is a long, vigorous walk, usually on trails or footpaths in the countryside. Walking for pleasure developed in Europe during the eighteenth century.[1] Religious pilgrimages have existed much longer but they involve walking long distances for a spiritual purpose associated with specific...

 

 

Rank found in some navies and maritime organizations This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Petty officer first class – news · newspapers · books · scholar · JSTOR (November 2010) (Learn how and when to remove this message) Petty officer first class (PO1) is a rank found in some navies and maritime ...

Pour les articles homonymes, voir Karaté (homonymie). Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (novembre 2015). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». E...

 

 

American sitcom television series This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Grosse Pointe TV series – news · newspapers · books · scholar · JSTOR (November 2017) (Learn how and when to remove this message) Grosse PointeGenreSitcomCreated byDarren StarStarringIrene MolloyWilliam RagsdaleAl SantosLi...

 

 

For related races, see 1950 United States gubernatorial elections. 1950 Connecticut gubernatorial election ← 1948 November 7, 1950 1954 →   Nominee John Davis Lodge Chester Bowles Party Republican Democratic Popular vote 436,418 419,404 Percentage 49.66% 47.73% County resultsLodge:      50–60%      60–70%Bowles:      40–50%      50–60% Governor before el...

Musim atau kompetisi terkini: Liga Negara Bola Voli Putra FIVB 2023VNLOlahragaBola voliDidirikan2017; 7 tahun lalu (2017)Musim awal2018CEOAry GraçaJumlah tim16BenuaInternasional (FIVB)Juaraterkini Prancis (gelar ke-1)Juara terbanyak Rusia (2 gelar)Situs web resmiVolleyball Nations League Liga Negara Bola Voli Putra FIVB adalah kompetisi bola voli internasional yang diikuti oleh tim nasional putra senior anggota Fédération Internationale de Volleyball (FIVB), badan pengatur o...

 

 

اضغط هنا للاطلاع على كيفية قراءة التصنيف فيروسات هربسية المرتبة التصنيفية فصيلة[1][2]  تصنيف الفيروسات المجموعة: (dsDNA) I مجموعة الرتبة: Herpesvirales الفصيلة: فيروسات هربسية الاسم العلمي Herpesviridae[1][2]  Genera تحت عائلة فيروسات هربسية ألفا    فيروس بسيط   ...

 

 

Julien Bessières Henri Géraud Julien, Ksatria Kekaisaran Prancis Pertama lahir 30 Juli 1777 di Gramat, meninggal 31 Juli 1840 di Paris, merupakan seorang ilmuwan, diplomat dan politikus Prancis pada abad ke-18 dan 19. Ia adalah sepupu marsekal Jean-Baptiste Bessières dan Bertrand Bessières. Daftar pustaka Dr Vincent, « Les Français à Corfou. L'arrivée. », in Revue des Études napoléoniennes., tome XXX, janvier-juin 1930. Sumber (dalam bahasa Prancis) Francois Pou...

忌部氏→斎部氏 氏神の天太玉命神社(奈良県橿原市)氏姓 忌部首→忌部連→忌部宿禰→斎部宿禰始祖 1:天太玉命2:天日鷲命(阿波忌部)3:天道根命(紀伊忌部、讃岐忌部)種別 神別(天神)本貫 1:大和国高市郡忌部(奈良県橿原市忌部町)2:阿波国麻植郡忌部郷(徳島県吉野川市)3:紀伊国名草郡忌部郷(和歌山県和歌山市)著名な人物 忌部黒麻呂斎部広成斎�...

 

 

张建春,2024年 张建春(1965年5月—),男,山东菏泽郓城县人,中华人民共和国政治人物。1984年7月参加工作,曾任中共北京市委组织部常务副部长、中共中央组织部副部长[1]。现任中共中央宣传部副部长。 2024年6月21日,张建春因涉嫌严重违纪违法,接受中央纪委国家监委纪律审查和监察调查。[2]7月24日,全国政协十四届常委会第八次会议决定撤销其全国政协�...