Graviton

Graviton
CompositionElementary particle
StatisticsBose–Einstein statistics
Familyspin-2 boson
InteractionsGravitation
StatusHypothetical
SymbolG[1]
Theorized1930s[2]
The name is attributed to Dmitrii Blokhintsev and F. M. Gal'perin in 1934[3]
Mass0
< 6×10−32 eV/c2 [4]
Mean lifetimestable
Electric chargee
Color chargeNo
Spinħ

In theories of quantum gravity, the graviton is the hypothetical elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string.

If it exists, the graviton is expected to be massless because the gravitational force has a very long range, and appears to propagate at the speed of light. The graviton must be a spin-2 boson because the source of gravitation is the stress–energy tensor, a second-order tensor (compared with electromagnetism's spin-1 photon, the source of which is the four-current, a first-order tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field would couple to the stress–energy tensor in the same way gravitational interactions do. This result suggests that, if a massless spin-2 particle is discovered, it must be the graviton.[5]

Theory

It is hypothesized that gravitational interactions are mediated by an as yet undiscovered elementary particle, dubbed the graviton. The three other known forces of nature are mediated by elementary particles: electromagnetism by the photon, the strong interaction by gluons, and the weak interaction by the W and Z bosons. All three of these forces appear to be accurately described by the Standard Model of particle physics. In the classical limit, a successful theory of gravitons would reduce to general relativity, which itself reduces to Newton's law of gravitation in the weak-field limit.[6][7][8]

History

Albert Einstein discussed quantized gravitational radiation in 1916, the year following his publication of general relativity.[9]: 525  The term graviton was coined in 1934 by Soviet physicists Dmitry Blokhintsev and Fyodor Galperin [ru].[3][9] Paul Dirac reintroduced the term in a number of lectures in 1959, noting that the energy of the gravitational field should come in quanta.[10][11] A mediation of the gravitational interaction by particles was anticipated by Pierre-Simon Laplace.[12] Just like Newton's anticipation of photons, Laplace's anticipated "gravitons" had a greater speed than the speed of light in vacuum , the speed of gravitons expected in modern theories, and were not connected to quantum mechanics or special relativity, since these theories didn't yet exist during Laplace's lifetime.

Gravitons and renormalization

When describing graviton interactions, the classical theory of Feynman diagrams and semiclassical corrections such as one-loop diagrams behave normally. However, Feynman diagrams with at least two loops lead to ultraviolet divergences.[13] These infinite results cannot be removed because quantized general relativity is not perturbatively renormalizable, unlike quantum electrodynamics and models such as the Yang–Mills theory. Therefore, incalculable answers are found from the perturbation method by which physicists calculate the probability of a particle to emit or absorb gravitons, and the theory loses predictive veracity. Those problems and the complementary approximation framework are grounds to show that a theory more unified than quantized general relativity is required to describe the behavior near the Planck scale.

Comparison with other forces

Like the force carriers of the other forces (see photon, gluon, W and Z bosons), the graviton plays a role in general relativity, in defining the spacetime in which events take place. In some descriptions energy modifies the "shape" of spacetime itself, and gravity is a result of this shape, an idea which at first glance may appear hard to match with the idea of a force acting between particles.[14] Because the diffeomorphism invariance of the theory does not allow any particular space-time background to be singled out as the "true" space-time background, general relativity is said to be background-independent. In contrast, the Standard Model is not background-independent, with Minkowski space enjoying a special status as the fixed background space-time.[15] A theory of quantum gravity is needed in order to reconcile these differences.[16] Whether this theory should be background-independent is an open question. The answer to this question will determine the understanding of what specific role gravitation plays in the fate of the universe.[17]

Energy and wavelength

While gravitons are presumed to be massless, they would still carry energy, as does any other quantum particle. Photon energy and gluon energy are also carried by massless particles. It is unclear which variables might determine graviton energy, the amount of energy carried by a single graviton.

Alternatively, if gravitons are massive at all, the analysis of gravitational waves yielded a new upper bound on the mass of gravitons. The graviton's Compton wavelength is at least 1.6×1016 m, or about 1.6 light-years, corresponding to a graviton mass of no more than 7.7×10−23 eV/c2.[18] This relation between wavelength and mass-energy is calculated with the Planck–Einstein relation, the same formula that relates electromagnetic wavelength to photon energy.

Experimental observation

Unambiguous detection of individual gravitons, though not prohibited by any fundamental law, has been thought to be impossible with any physically reasonable detector.[19] The reason is the extremely low cross section for the interaction of gravitons with matter. For example, a detector with the mass of Jupiter and 100% efficiency, placed in close orbit around a neutron star, would only be expected to observe one graviton every 10 years, even under the most favorable conditions. It would be impossible to discriminate these events from the background of neutrinos, since the dimensions of the required neutrino shield would ensure collapse into a black hole.[19] It has been proposed that detecting single gravitons would be possible by quantum sensing.[20] Even quantum events may not indicate quantization of gravitational radiation.[21]

LIGO and Virgo collaborations' observations have directly detected gravitational waves.[22][23][24] Others have postulated that graviton scattering yields gravitational waves as particle interactions yield coherent states.[25] Although these experiments cannot detect individual gravitons, they might provide information about certain properties of the graviton.[26] For example, if gravitational waves were observed to propagate slower than c (the speed of light in vacuum), that would imply that the graviton has mass (however, gravitational waves must propagate slower than c in a region with non-zero mass density if they are to be detectable).[27] Observations of gravitational waves put an upper bound of 1.76×10−23 eV/c2 on the graviton's mass.[28] Solar system planetary trajectory measurements by space missions such as Cassini and MESSENGER give a comparable upper bound of 3.16×10−23 eV/c2.[29] The gravitational wave and planetary ephemeris need not agree: they test different aspects of a potential graviton-based theory.[30]: 71 

Astronomical observations of the kinematics of galaxies, especially the galaxy rotation problem and modified Newtonian dynamics, might point toward gravitons having non-zero mass.[31][32]

Difficulties and outstanding issues

Most theories containing gravitons suffer from severe problems. Attempts to extend the Standard Model or other quantum field theories by adding gravitons run into serious theoretical difficulties at energies close to or above the Planck scale. This is because of infinities arising due to quantum effects; technically, gravitation is not renormalizable. Since classical general relativity and quantum mechanics seem to be incompatible at such energies, from a theoretical point of view, this situation is not tenable. One possible solution is to replace particles with strings. String theories are quantum theories of gravity in the sense that they reduce to classical general relativity plus field theory at low energies, but are fully quantum mechanical, contain a graviton, and are thought to be mathematically consistent.[33]

See also

References

  1. ^ G is used to avoid confusion with gluons (symbol g)
  2. ^ Rovelli, C. (2001). "Notes for a brief history of quantum gravity". arXiv:gr-qc/0006061.
  3. ^ a b Blokhintsev, D. I.; Gal'perin, F. M. (1934). "Гипотеза нейтрино и закон сохранения энергии" [Neutrino hypothesis and conservation of energy]. Pod Znamenem Marxisma (in Russian). 6: 147–157. ISBN 978-5-04-008956-7.
  4. ^ Zyla, P.; et al. (Particle Data Group) (2020). "Review of Particle Physics: Gauge and Higgs bosons" (PDF). Progress of Theoretical and Experimental Physics. Archived (PDF) from the original on 2020-09-30.
  5. ^ For a comparison of the geometric derivation and the (non-geometric) spin-2 field derivation of general relativity, refer to box 18.1 (and also 17.2.5) of Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973). Gravitation. W. H. Freeman. ISBN 0-7167-0344-0.
  6. ^ Feynman, R. P.; Morinigo, F. B.; Wagner, W. G.; Hatfield, B. (1995). Feynman Lectures on Gravitation. Addison-Wesley. ISBN 0-201-62734-5.
  7. ^ Zee, Anthony (2003). Quantum Field Theory in a Nutshell. Princeton, New Jersey: Princeton University Press. ISBN 0-691-01019-6.
  8. ^ Randall, L. (2005). Warped Passages: Unraveling the Universe's Hidden Dimensions. Ecco Press. ISBN 0-06-053108-8.
  9. ^ a b Stachel, John (1999). "The Early History of Quantum Gravity (1916–1940)". Black Holes, Gravitational Radiation and the Universe. Fundamental Theories of Physics. Vol. 100. pp. 525–534. doi:10.1007/978-94-017-0934-7_31. ISBN 978-90-481-5121-9.
  10. ^ Farmelo, Graham (2009). The Strangest Man : The Hidden Life of Paul Dirac, Quantum Genius. Faber and Faber. pp. 367–368. ISBN 978-0-571-22278-0.
  11. ^ Debnath, Lokenath (2013). "A short biography of Paul A. M. Dirac and historical development of Dirac delta function". International Journal of Mathematical Education in Science and Technology. 44 (8): 1201–1223. Bibcode:2013IJMES..44.1201D. doi:10.1080/0020739X.2013.770091. ISSN 0020-739X.
  12. ^ Zee, Anthony (2018-04-24). On Gravity: A Brief Tour of a Weighty Subject. Princeton, New Jersey: Princeton University Press. ISBN 978-0-691-17438-9.
  13. ^ Bern, Zvi; Chi, Huan-Hang; Dixon, Lance; Edison, Alex (2017-02-22). "Two-loop renormalization of quantum gravity simplified" (PDF). Physical Review D. 95 (4): 046013. arXiv:1701.02422. Bibcode:2017PhRvD..95d6013B. doi:10.1103/PhysRevD.95.046013. ISSN 2470-0010.
  14. ^ See the other Wikipedia articles on general relativity, gravitational field, gravitational wave, etc.
  15. ^ Colosi, D.; et al. (2005). "Background independence in a nutshell: The dynamics of a tetrahedron". Classical and Quantum Gravity. 22 (14): 2971–2989. arXiv:gr-qc/0408079. Bibcode:2005CQGra..22.2971C. doi:10.1088/0264-9381/22/14/008. S2CID 17317614.
  16. ^ Witten, E. (1993). "Quantum Background Independence In String Theory". arXiv:hep-th/9306122.
  17. ^ Smolin, L. (2005). "The case for background independence". arXiv:hep-th/0507235.
  18. ^ Abbott, B. P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (1 June 2017). "GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2". Physical Review Letters. 118 (22): 221101. arXiv:1706.01812. Bibcode:2017PhRvL.118v1101A. doi:10.1103/PhysRevLett.118.221101. PMID 28621973. S2CID 206291714.
  19. ^ a b Rothman, T.; Boughn, S. (2006). "Can Gravitons be Detected?". Foundations of Physics. 36 (12): 1801–1825. arXiv:gr-qc/0601043. Bibcode:2006FoPh...36.1801R. doi:10.1007/s10701-006-9081-9. S2CID 14008778.
  20. ^ Tobar, Germain; et al. (22 August 2024). "Detecting single gravitons with quantum sensing". Nat Commun. 15 (1): 7229. arXiv:2308.15440. doi:10.1038/s41467-024-51420-8. PMC 11341900. PMID 39174544.
  21. ^ Carney, Daniel; Domcke, Valerie; Rodd, Nicholas L. (2024-02-05). "Graviton detection and the quantization of gravity". Physical Review D. 109 (4): 044009. arXiv:2308.12988. doi:10.1103/PhysRevD.109.044009.
  22. ^ Abbott, B. P.; et al. (2016-02-11). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6). LIGO Scientific Collaboration and Virgo Collaboration: 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. ISSN 0031-9007. PMID 26918975. S2CID 124959784.{{cite journal}}: CS1 maint: date and year (link)
  23. ^ Castelvecchi, Davide; Witze, Witze (February 11, 2016). "Einstein's gravitational waves found at last". Nature News. doi:10.1038/nature.2016.19361. S2CID 182916902.
  24. ^ "Gravitational waves detected 100 years after Einstein's prediction". NSF – National Science Foundation. Retrieved 2016-02-11.
  25. ^ Senatore, L.; Silverstein, E.; Zaldarriaga, M. (2014). "New sources of gravitational waves during inflation". Journal of Cosmology and Astroparticle Physics. 2014 (8): 016. arXiv:1109.0542. Bibcode:2014JCAP...08..016S. doi:10.1088/1475-7516/2014/08/016. S2CID 118619414.
  26. ^ Dyson, Freeman (8 October 2013). "Is a Graviton Detectable?". International Journal of Modern Physics A. 28 (25): 1330041–1–1330035–14. Bibcode:2013IJMPA..2830041D. doi:10.1142/S0217751X1330041X.
  27. ^ Will, C. M. (1998). "Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries" (PDF). Physical Review D. 57 (4): 2061–2068. arXiv:gr-qc/9709011. Bibcode:1998PhRvD..57.2061W. doi:10.1103/PhysRevD.57.2061. S2CID 41690760. Archived (PDF) from the original on 2018-07-24.
  28. ^ R Abbot; et al. (15 June 2021). "Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog". Physical Review Letters. 103 (12): 122022. arXiv:2010.14529. Bibcode:2021PhRvD.103l2002A. doi:10.1103/PhysRevD.103.122002.
  29. ^ L. Bernus; et al. (15 July 2020). "Constraint on the Yukawa suppression of the Newtonian potential from the planetary ephemeris INPOP19a". Physical Review Letters. 102 (2): 021501(R). arXiv:2006.12304. Bibcode:2020PhRvD.102b1501B. doi:10.1103/PhysRevD.102.021501.
  30. ^ Fienga, Agnès; Minazzoli, Olivier (2024-01-29). "Testing theories of gravity with planetary ephemerides". Living Reviews in Relativity. 27 (1): 1. doi:10.1007/s41114-023-00047-0. ISSN 1433-8351.
  31. ^ Trippe, Sascha (2012). "A Simplified Treatment of Gravitational Interaction on Galactic Scales". Journal of the Korean Astronomical Society. 46 (1): 41–47. arXiv:1211.4692. Bibcode:2013JKAS...46...41T. doi:10.5303/JKAS.2013.46.1.41.
  32. ^ Platscher, Moritz; Smirnov, Juri; Meyer, Sven; Bartelmann, Matthias (2018). "Long range effects in gravity theories with Vainshtein screening". Journal of Cosmology and Astroparticle Physics. 2018 (12): 009. arXiv:1809.05318. Bibcode:2018JCAP...12..009P. doi:10.1088/1475-7516/2018/12/009. S2CID 86859475.
  33. ^ Sokal, A. (July 22, 1996). "Don't Pull the String Yet on Superstring Theory". The New York Times. Retrieved March 26, 2010.

Read other articles:

Japanese manga and anime series This article is about the manga. For its film adaptation, see Nisekoi (film). NisekoiCover of the first manga volume featuring Kosaki Onodera, Raku Ichijo and Chitoge KirisakiニセコイGenreHarem[1]Romantic comedy[2] MangaWritten byNaoshi KomiPublished byShueishaEnglish publisherNA: Viz MediaImprintJump ComicsMagazineWeekly Shōnen JumpEnglish magazineNA: Weekly Shonen JumpDemographicShōnenOriginal runNovember 7, 2011 – August 8, ...

 

Prima Categoria 1906 Competizione Prima Categoria Sport Calcio Edizione 9ª Organizzatore Federazione Italiana Football Date dal 7 gennaio 1906al 6 maggio 1906 Luogo  Italia Partecipanti 5 Formula Eliminatorie regionali + girone finale Risultati Vincitore Milan(2º titolo) Secondo Juventus Terzo Genoa Statistiche Miglior marcatore Guido Pedroni (3) Incontri disputati 12 Gol segnati 31 (2,58 per incontro) I calciatori del Milan campioni d'Italia: Bosshard, Attilio Colom...

 

Ferrari SF16-HFerrari SF16-H yang dikendarai oleh Sebastian VettelKategoriFormula SatuKonstruktorFerrariPerancangSimone RestaPendahuluFerrari SF15-TPenerusFerrari SF70HSpesifikasi teknisSasisSerat karbon dan struktur komposit sarang lebahMesinFerrari 061 16 L (976 cu in) injeksi langsung mesin V6 turbocharged, 900 hp terbatas pada 15.000 rpm dalam mid-mounted, tata letak penggerak roda belakangMotor listrikKinetic dan thermal energy recovery systemsTransmisiFerrari dengan perpi...

Polish football club Home match with Śmigły Wilno in 1934 Legia Poznań (full name Klub Sportowy Legia Poznań) is a defunct Polish football club from Poznań. Founded in 1922, Legia was the second strongest team in the city of Poznań, behind Warta Poznań. Its team was nine times champion of Poznan's A-Class Regional League (see: Lower Level Football Leagues in Interwar Poland) - in 1927, 1929, 1930, 1931, 1932, 1933, 1934, 1934–1935, 1937–1938 and in 1938–1939. Despite these succes...

 

Twin-engine light utility helicopter AW169 AW169 at the Farnborough Air Show, 2012 Role HelicopterType of aircraft National origin Italy Manufacturer Leonardo S.p.A. AgustaWestland First flight 10 May 2012 Introduction 2015 Status Active service Produced 2015–present Number built 170+ as of October 2023 The AgustaWestland AW169[1] is a twin-engine, 10-seat, 4.8t helicopter developed and manufactured by the helicopter division of Leonardo (formerly AgustaWestland, merged into Finmecc...

 

Hemorrhagia Intracerebral Pendarahan otak adalah pendarahan dalam otak atau di sekitar otak.[1] Dalam bahasa yunani, darah adalah hemo. Hemorrhagia secara harfiah berarti meledak darah secara terus menerus.[2] Heorrhagia cerebral juga disebut perdarahan otak, perdarahan intrakranial, atau perdarahan intraserebral.[2] Ketiganya menyumbang sekitar 13% dari strok.[2] Penyebab perdarahan otak diantaranya tekanan darah tinggi, pembuluh darah abnormal yang bocor, pen...

У этого термина существуют и другие значения, см. Чайки (значения). Чайки Доминиканская чайкаЗападная чайкаКалифорнийская чайкаМорская чайка Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:Вторич...

 

Aras lebanon Aras lebanon di Hutan Cedar Allah Status konservasi Rentan  (IUCN 3.1) Klasifikasi ilmiah Kerajaan: Plantae Divisi: Pinophyta Kelas: Pinopsida Ordo: Pinales Famili: Pinaceae Genus: Cedrus Spesies: C. libani Nama binomial Cedrus libaniA.Rich. Aras lebanon (Cedrus libani) adalah spesies cedar yang berasal dari kawasan Mediterania.[1][2][3] Ada dua tipe Cedrus libani berbeda yang dianggap sebagai subspesies atau varietas: Aras lebanon (Cedrus liban...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

Kurdish organisation You can help expand this article with text translated from the corresponding article in Turkish. (February 2013) Click [show] for important translation instructions. View a machine-translated version of the Turkish article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text...

 

River, tributary of the Columbia Pend OreillePend-d'Oreille, Clark ForkAlbeni Falls Dam on the Pend Oreille RiverMap of the Pend Oreille River and its main tributaries.LocationCountryUnited States, CanadaStateWashington, IdahoProvinceBritish ColumbiaCitySandpoint, IDPhysical characteristicsSourceLake Pend Oreille • locationIdaho • coordinates48°14′20″N 116°36′25″W / 48.23889°N 116.60694°W / 48.23889; -116.60694 R...

 

Theatre in Copenhagen, DenmarkDet Ny TeaterThe theatre seen from Gammel KongevejAddressGammel Kongevej 29Copenhagen VDenmarkCapacity1,000 (main)300 (Sceneriet)Current useTheatreConstructionOpened1908Closed1990–1994Years active104ArchitectLorenz GudmeWebsitehttp://www.detnyteater.dk/ Det Ny Teater (English: The New Theatre) is an established theatre in Copenhagen, Denmark, first opened in 1908. It is based in a building which spans a passage between Vesterbrogade and Gammel Kongevej in C...

Study of the role of government within the economy Public Finance redirects here. For the magazine, see Public Finance (magazine). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Public finance – news · newspapers · books · scholar · JSTOR (July 2008) (Learn how and when to remove this message) Public financ...

 

For the American physician, see Frank Gotch (physician). American professional wrestler (1877–1917) Frank GotchGotch in 1917Birth nameFrank Alvin GotchBorn(1877-04-27)April 27, 1877Humboldt, Iowa, U.S.DiedDecember 17, 1917(1917-12-17) (aged 40)[1]Humboldt, Iowa, U.S.Cause of deathUremia poisoningSpouse(s) Gladys Oestrich ​ ​(m. 1911; died 1917)​Children1Professional wrestling careerRing name(s)Frank GotchFrank KennedyBilled height...

 

Dan QuayleFoto resmi 1989 Wakil Presiden Amerika Serikat ke-44Masa jabatan20 Januari 1989 – 20 Januari 1993PresidenGeorge H. W. BushPendahuluGeorge H. W. BushPenggantiAl GoreSenator Amerika Serikat dari IndianaMasa jabatan3 Januari 1981 – 3 Januari 1989PendahuluBirch BayhPenggantiDan CoatsAnggota Dewan Perwakilan Rakyat Amerika Serikat dari IndianaMasa jabatan3 Januari 1977 – 3 Januari 1981PendahuluJ. Edward RoushPenggantiDan Coats Informasi pribadiLahir4 Febr...

DHS Chemical and Biological Defense DivisionAgency overviewFormed2003JurisdictionUnited StatesHeadquartersDHS Nebraska Avenue Complex, Washington D.C.Agency executiveS. Randolph Long, Acting DirectorParent agencyDHS Science and Technology DirectorateWebsiteDHS Chemical and Biological Defense Division The Chemical and Biological Defense Division (CBD) is a division of the Science and Technology Directorate of the United States Department of Homeland Security. Within the Homeland Security Advan...

 

Mixed martial arts promotion based in Russia 2024 in Absolute Championship AkhmatInformationFirst dateJanuary 26, 2024Last dateTBDEventsTotal eventsTBDFightsTotal fightsTBDTitle fightsTBD← 2023 in ACA2025 in ACA → The year 2024 is the 12th year in the history of the Absolute Championship Akhmat, a mixed martial arts promotion based in Russia. 2024 will begin with ACA 169. List of events No. Event Date Venue Location 1 ACA 169: Bibulatov vs. Deák January 26, 2024 Sports ...

 

This page is an archive of past discussions. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. Templates for deletion nomination of Template: Template: has been nominated for deletion. You are invited to comment on the discussion at the template's entry on the Templates for Deletion page. Thank you. Hairy Dude (talk) 16:40, 30 September 2009 (UTC)

Moby-Dick; atau, The Whale Sampul buku Moby Dick edisi pertama Amerika SerikatPengarangHerman MelvilleNegaraAmerika SerikatBahasaInggrisGenrePetualangan, Epik, Cerita lautPenerbitRichard Bentley (Britania Raya)Harper & Brothers (AS)Tanggal terbit18 Oktober 1851 (Britania)14 November 1851 (AS)Jenis mediaCetakHalaman927 (Edisi pertama Inggris, 3 volume)635 (Edisi pertama Amerika Serikat) Moby-Dick adalah judul novel karya penulis Amerika Serikat Herman Melville yang diambil dari j...

 

Kartu dari Jerman pada abad ke-20 yang menyebut nama Seoul dengan umlaut ö. Seoul telah dikenal pada masa lampau dengan nama Wiryeseong (위례성; 慰禮城, zaman Baekje), Namgyeong (남경; 南京, zaman Goryeo), Hanyang (한양; 漢陽, zaman Joseon), atau Hanseong (한성; 漢城). Selama periode invasi dan kolonialisasi Jepang (1910-1945), Seoul diberi nama Keijō (けいじょう; 京城) (dalam bahasa Jepang) atau Gyeongseong (경성; 京城) (dalam bahasa Korea). Namanya yang sekara...