The statistical mechanics of large many-body systems obeys laws described by Maxwell–Boltzmann statistics. Quantum statistics is more complicated because of the different behaviors of two different kinds of particles called fermions and bosons. In two-dimensional systems, however, there is a third type of particle, called an anyon.
In the three-dimensional world we live in, there are only two types of particles: "fermions", which repel each other, and "bosons", which like to stick together. A commonly known fermion is the electron, which transports electricity; and a commonly known boson is the photon, which carries light. In the two-dimensional world, however, there is another type of particle, the anyon, which doesn't behave like either a fermion or a boson.
— "Finally, anyons reveal their exotic quantum properties", Aalto University press release, April 2020[3]
In a two-dimensional world, two identical anyons change their wavefunction when they swap places in ways that cannot happen in three-dimensional physics:
...in two dimensions, exchanging identical particles twice is not equivalent to leaving them alone. The particles' wavefunction after swapping places twice may differ from the original one; particles with such unusual exchange statistics are known as anyons. By contrast, in three dimensions, exchanging particles twice cannot change their wavefunction, leaving us with only two possibilities: bosons, whose wavefunction remains the same even after a single exchange, and fermions, whose exchange only changes the sign of their wavefunction.
— Kirill Shtengel, "A home for anyon?", Nature Physics[4]
This process of exchanging identical particles, or of circling one particle around another, is referred to as "braiding". Braiding two anyons creates a historical record of the event, as their changed wave functions record the number of braids.[5]
Microsoft has invested in research concerning anyons as a potential basis for topological quantum computing.[6] They may be useful in quantum computing as a form of memory.[6] Anyons circling each other ("braiding") would encode information in a more robust way than other potential quantum computing technologies.[7] Most investment in quantum computing, however, is based on methods that do not use anyons.[7]
History
Like so many deep ideas in physics, the topological underpinnings of anyons can be traced back to Dirac.
— Biedenharn et al., The Ancestry of the 'Anyon'[8]
In 1977, two theoretical physicists working at the University of Oslo, Jon Magne Leinaas and Jan Myrheim, showed that the traditional classification of particles as either fermions or bosons would not apply if they were restricted to move in only two dimensions.[9] Hypothetical particles, being neither bosons nor fermions, would be expected to exhibit a diverse range of previously unexpected properties. In 1982, Frank Wilczek published two papers exploring the fractional statistics of quasiparticles in two dimensions, giving them the name "anyons" to indicate that the phase shift upon permutation can take any value.[10]
Daniel Tsui and Horst Störmer discovered the fractional quantum Hall effect in 1982. The mathematics developed by Wilczek proved to be useful to Bertrand Halperin at Harvard University in explaining aspects of it.[11] Frank Wilczek, Dan Arovas, and Robert Schrieffer verified this statement in 1985 with an explicit calculation that predicted that particles existing in these systems are in fact anyons.[12][13]
Abelian anyons
In quantum mechanics, and some classical stochastic systems, indistinguishable particles have the property that exchanging the states of particle i with particle j (symbolically ) does not lead to a measurably different many-body state.
In a quantum mechanical system, for example, a system with two indistinguishable particles, with particle 1 in state and particle 2 in state , has state in Dirac notation. Now suppose we exchange the states of the two particles, then the state of the system would be . These two states should not have a measurable difference, so they should be the same vector, up to a phase factor:
Here, is the phase factor.
In space of three or more dimensions, the phase factor is or . Thus, elementary particles are either fermions, whose phase factor is , or bosons, whose phase factor is . These two types have different statistical behaviour. Fermions obey Fermi–Dirac statistics, while bosons obey Bose–Einstein statistics. In particular, the phase factor is why fermions obey the Pauli exclusion principle: If two fermions are in the same state, then we have
The state vector must be zero, which means it is not normalizable, thus it is unphysical.
In two-dimensional systems, however, quasiparticles can be observed that obey statistics ranging continuously between Fermi–Dirac and Bose–Einstein statistics, as was first shown by Jon Magne Leinaas and Jan Myrheim of the University of Oslo in 1977.[14] In the case of two particles this can be expressed as
where can be other values than just or . It is important to note that there is a slight abuse of notation in this shorthand expression, as in reality this wave function can be and usually is multi-valued. This expression actually means that when particle 1 and particle 2 are interchanged in a process where each of them makes a counterclockwise half-revolution about the other, the two-particle system returns to its original quantum wave function except multiplied by the complex unit-norm phase factor eiθ. Conversely, a clockwise half-revolution results in multiplying the wave function by e−iθ. Such a theory obviously only makes sense in two-dimensions, where clockwise and counterclockwise are clearly defined directions.
In the case θ = π we recover the Fermi–Dirac statistics (eiπ = −1) and in the case θ = 0 (or θ = 2π) the Bose–Einstein statistics (e2πi = 1). In between we have something different. Frank Wilczek in 1982 explored the behavior of such quasiparticles and coined the term "anyon" to describe them, because they can have any phase when particles are interchanged.[15] Unlike bosons and fermions, anyons have the peculiar property that when they are interchanged twice in the same way (e.g. if anyon 1 and anyon 2 were revolved counterclockwise by half revolution about each other to switch places, and then they were revolved counterclockwise by half revolution about each other again to go back to their original places), the wave function is not necessarily the same but rather generally multiplied by some complex phase (by e2iθ in this example).
We may also use θ = 2πs with particle spin quantum number s, with s being integer for bosons, half-integer for fermions, so that
or
At an edge, fractional quantum Hall effect anyons are confined to move in one space dimension. Mathematical models of one-dimensional anyons provide a base of the commutation relations shown above.
In a three-dimensional position space, the fermion and boson statistics operators (−1 and +1 respectively) are just 1-dimensional representations of the permutation group (SN of N indistinguishable particles) acting on the space of wave functions. In the same way, in two-dimensional position space, the abelian anyonic statistics operators (eiθ) are just 1-dimensional representations of the braid group (BN of N indistinguishable particles) acting on the space of wave functions. Non-abelian anyonic statistics are higher-dimensional representations of the braid group. Anyonic statistics must not be confused with parastatistics, which describes statistics of particles whose wavefunctions are higher-dimensional representations of the permutation group.[16]: 22
Topological equivalence
The fact that the homotopy classes of paths (i.e. notion of equivalence on braids) are relevant hints at a more subtle insight. It arises from the Feynman path integral, in which all paths from an initial to final point in spacetime contribute with an appropriate phase factor. The Feynman path integral can be motivated from expanding the propagator using a method called time-slicing,[17] in which time is discretized.
In non-homotopic paths, one cannot get from any point at one time slice to any other point at the next time slice. This means that we can consider homotopic equivalence class of paths to have different weighting factors.[18]
For a more transparent way of seeing that the homotopic notion of equivalence is the "right" one to use, see Aharonov–Bohm effect.
Experiment
In 2020, two teams of scientists (one in Paris, the other at Purdue) announced new experimental evidence for the existence of anyons. Both experiments were featured in Discover Magazine's 2020 annual "state of science" issue.[2]
In July, 2020, scientists at Purdue University detected anyons using a different setup. The team's interferometer routes the electrons through a specific maze-like etched nanostructure made of gallium arsenide and aluminium gallium arsenide. "In the case of our anyons the phase generated by braiding was 2π/3", he said. "That's different than what's been seen in nature before."[22][23]
As of 2023, this remains an active area of research; using a superconducting processor, Google Quantum AI reported on the first braiding of non-Abelian anyon-like particles in an arXiv article by Andersen et al. in October 2022,[24] later published in Nature.[25] In an arXiv article released in May 2023, Quantinuum reported on non-abelian braiding using a trapped-ion processor.[26]
In 1988, Jürg Fröhlich showed that it was valid under the spin–statistics theorem for the particle exchange to be monoidal (non-abelian statistics).[27] In particular, this can be achieved when the system exhibits some degeneracy, so that multiple distinct states of the system have the same configuration of particles. Then an exchange of particles can contribute not just a phase change, but can send the system into a different state with the same particle configuration. Particle exchange then corresponds to a linear transformation on this subspace of degenerate states. When there is no degeneracy, this subspace is one-dimensional and so all such linear transformations commute (because they are just multiplications by a phase factor). When there is degeneracy and this subspace has higher dimension, then these linear transformations need not commute (just as matrix multiplication does not).
Gregory Moore, Nicholas Read, and Xiao-Gang Wen pointed out that non-Abelian statistics can be realized in the fractional quantum Hall effect (FQHE).[28][29] While at first non-abelian anyons were generally considered a mathematical curiosity, physicists began pushing toward their discovery when Alexei Kitaev showed that non-abelian anyons could be used to construct a topological quantum computer. As of 2012, no experiment has conclusively demonstrated the existence of non-abelian anyons although promising hints are emerging in the study of the ν = 5/2 FQHE state.[needs update][30][31] Experimental evidence of non-abelian anyons, although not yet conclusive and currently contested,[32] was presented in October, 2013.[needs update][33] Recent works claim the creation of non-abelian topological order and anyons on a trapped-ion processor [26] and demonstration of non-abelian braiding of graph vertices in a superconducting processor.[25]
Fusion of anyons
In much the same way that two fermions (e.g. both of spin 1/2) can be looked at together as a composite boson (with total spin in a superposition of 0 and 1), two or more anyons together make up a composite anyon (possibly a boson or fermion). The composite anyon is said to be the result of the fusion of its components.
If identical abelian anyons each with individual statistics (that is, the system picks up a phase when two individual anyons undergo adiabatic counterclockwise exchange) all fuse together, they together have statistics . This can be seen by noting that upon counterclockwise rotation of two composite anyons about each other, there are pairs of individual anyons (one in the first composite anyon, one in the second composite anyon) that each contribute a phase . An analogous analysis applies to the fusion of non-identical abelian anyons. The statistics of the composite anyon is uniquely determined by the statistics of its components.
Non-abelian anyons have more complicated fusion relations. As a rule, in a system with non-abelian anyons, there is a composite particle whose statistics label is not uniquely determined by the statistics labels of its components, but rather exists as a quantum superposition (this is completely analogous to how two fermions known to have spin 1/2 are together in quantum superposition of total spin 1 and 0). If the overall statistics of the fusion of all of several anyons is known, there is still ambiguity in the fusion of some subsets of those anyons, and each possibility is a unique quantum state. These multiple states provide a Hilbert space on which quantum computation can be done.[34]
Topological basis
Anticlockwise rotation
Clockwise rotation
Exchange of two particles in 2+1 spacetime by rotation. The rotations are inequivalent, since one cannot be deformed into the other (without the worldlines leaving the plane, an impossibility in 2d space).
The situation changes in two dimensions. Here the first homotopy group of SO(2,1), and also Poincaré(2,1), is Z (infinite cyclic). This means that Spin(2,1) is not the universal cover: it is not simply connected. In detail, there are projective representations of the special orthogonal group SO(2,1) which do not arise from linear representations of SO(2,1), or of its double cover, the spin group Spin(2,1). Anyons are evenly complementary representations of spin polarization by a charged particle.
This concept also applies to nonrelativistic systems. The relevant part here is that the spatial rotation group SO(2) has an infinite first homotopy group.
This fact is also related to the braid groups well known in knot theory. The relation can be understood when one considers the fact that in two dimensions the group of permutations of two particles is no longer the symmetric groupS2 (with two elements) but rather the braid group B2 (with an infinite number of elements). The essential point is that one braid can wind around the other one, an operation that can be performed infinitely often, and clockwise as well as counterclockwise.
Fractionalized excitations as point particles can be bosons, fermions or anyons in 2+1 spacetime dimensions. It is known that point particles can be only either bosons or fermions in 3+1 and higher spacetime dimensions. However, the loop- (or string-) or membrane-like excitations are extended objects that can have fractionalized statistics.
Current research shows that the loop- and string-like excitations exist for topological orders in the 3+1 dimensional spacetime, and their multi-loop/string-braiding statistics are the key signatures for identifying 3+1‑dimensional topological orders.[37][38][39] The multi-loop/string-braiding statistics of 3+1‑dimensional topological orders can be captured by the link invariants of particular topological quantum field theories in 4 spacetime dimensions.[39] Explained in a colloquial manner, the extended objects (loop, string, or membrane, etc.) can be potentially anyonic in 3+1 and higher spacetime dimensions in the long-range entangled systems.
^ ab
Bartolomei, H.; Kumar, M.; Bisognin, R.; et al. (10 April 2020), "Fractional statistics in anyon collisions", Science, 368 (6487): 173–177, Elementary particles in three dimensions are either bosons or fermions, depending on their spin. In two dimensions, it is in principle possible to have particles that lie somewhere in between, but detecting the statistics of these so-called anyons directly is tricky.
^"Finally, anyons reveal their exotic quantum properties". Aalto University. 7 December 2018. Retrieved 24 September 2020. They were first proposed in the late 1970s, but direct experimental evidence of their quantum statistics hasn't been conclusively shown until now.
^
Shtengel, Kirilli (2007). "A home for anyon?". Nature Physics. 3 (11): 763. doi:10.1038/nphys767. Retrieved 30 November 2020. From a physicist's point of view, having two spatial dimensions is special: a pair of particles trading places behave very differently in two dimensions than they do in three. In three dimensions, any two sets of paths taken by two identical particles in the process of exchanging their positions can be continuously morphed into one another. But in two dimensions, particles can wind around each other in two distinct ways, clockwise or anticlockwise. A profound consequence of this observation for quantum mechanics is that in two dimensions, exchanging identical particles twice is not equivalent to leaving them alone.
^
Yirka, Bob (10 July 2020). "Best evidence yet for existence of anyons". Phys.org News. Retrieved 30 November 2020. If a fermion or a boson were dragged around another of its kind, theory suggests, the action would not produce a record of what had occurred. But because anyons alter wave functions, they would create such a record.
^ abWilczek, Frank (2021). Fundamentals : Ten Keys to Reality. New York, New York: Penguin Press. pp. 89–90. ISBN9780735223790. LCCN2020020086.
^ ab
Castelvecchi, Davide (3 July 2020). "Welcome anyons! Physicists find best evidence yet for long-sought 2D structures". Nature. 583 (7815): 176–177. Bibcode:2020Natur.583..176C. doi:10.1038/d41586-020-01988-0. PMID32620884. S2CID220336025. Simon and others have developed elaborate theories that use anyons as the platform for quantum computers. Pairs of the quasiparticle could encode information in their memory of how they have circled around one another. And because the fractional statistics is 'topological' – it depends on the number of times one anyon went around another, and not on slight changes to its path – it is unaffected by tiny perturbations. This robustness could make topological quantum computers easier to scale up than are current quantum-computing technologies, which are error-prone.
^
Wilczek, Frank (January 2006). "From electronics to anyonics". Physics World. 19: 22–23. doi:10.1088/2058-7058/19/1/31. ISSN0953-8585. In the early 1980s I named the hypothetical new particles 'anyons', the idea being that anything goes – but I did not lose much sleep anticipating their discovery. Very soon afterwards, however, Bert Halperin at Harvard University found the concept of anyons useful in understanding certain aspects of the fractional quantum Hall effect, which describes the modifications that take place in electronics at low temperatures in strong magnetic fields.
^"Anyons, anyone?". Symmetry Magazine. 31 August 2011. Retrieved 24 September 2020. In 1982 physicist Frank Wilczek gave these interstitial particles the name anyon ... 'Any anyon can be anything between a boson or a fermion', Keilmann says. 'Wilczek is a funny guy.'
^
Khurana, Anil (7 December 2018). "Bosons Condense and Fermions 'Exclude', But Anyons ...?". Physics Today. doi:10.1063/1.2811205. Retrieved 26 November 2020. In 1984, two years after Wilczek discussed this seemingly arcane possibility, Bertrand Halperin (Harvard University) suggested that the excitations in the theory of fractional quantum Hall effect discussed by Robert Laughlin (Stanford University) behave like anyons. Later Wilczek, Daniel Arovas (University of California, San Diego) and Robert Schrieffer (University of California, Santa Barbara) confirmed the idea.
^
Yirka, Bob (10 April 2020). "Anyon evidence observed using tiny anyon collider". Phys.org. Retrieved 12 December 2020. The work involved creating a very tiny 2-D anyon collider—so small they had to use an electron microscope to observe the action inside of it. The collider consisted of a 2-D plane set between another layered material. More specifically, the collider held a quantum Hall liquid that was kept inside of a strong magnetic field.
^
Najjar, Dana (12 May 2020). "'Milestone' Evidence for Anyons, a Third Kingdom of Particles". Quanta Magazine. Retrieved 12 December 2020. In 2016, three physicists described an experimental setup that resembles a tiny particle collider in two dimensions. Fève and his colleagues built something similar and used it to smash anyons together. By measuring the fluctuations of the currents in the collider, they were able to show that the behavior of the anyons corresponds exactly with theoretical predictions.
^Tally, Steve (4 September 2020). "New evidence that the quantum world is even stranger than we thought". Phys.org. One characteristic difference between fermions and bosons is how the particles act when they are looped, or braided, around each other. Fermions respond in one straightforward way, and bosons in another expected and straightforward way. Anyons respond as if they have a fractional charge, and even more interestingly, create a nontrivial phase change as they braid around one another. This can give the anyons a type of "memory" of their interaction.
^
Andersen, Trond I.; et al. (19 October 2022). "Observation of non-Abelian exchange statistics on a superconducting processor". arXiv:2210.10255 [quant-ph].
^ ab
Iqbal, Mohsin; Tantivasadakarn, Nathanan; Verresen, Ruben; Campbell, Sara L.; Dreiling, Joan M.; Figgatt, Caroline; Gaebler, John P.; Johansen, Jacob; Mills, Michael; Moses, Steven A.; Pino, Juan M.; Ransford, Anthony; Rowe, Mary; Siegfried, Peter; Stutz, Russell P.; Foss-Feig, Michael; Vishwanath, Ashvin; Dreyer, Henrik (7 May 2023). "Creation of Non-Abelian Topological Order and Anyons on a Trapped-Ion Processors". arXiv:2305.03766 [quant-ph]. Non-Abelian topological order (TO) is a coveted state of matter with remarkable properties, including quasiparticles that can remember the sequence in which they are exchanged. These anyonic excitations are promising building blocks of fault-tolerant quantum computers. However, despite extensive efforts, non-Abelian TO and its excitations have remained elusive, unlike the simpler quasiparticles or defects in Abelian TO. In this work, we present the first unambiguous realization of non-Abelian TO and demonstrate control of its anyons.
^
Fröhlich, Jürg (1988). "Statistics of Fields, the Yang–Baxter Equation, and the Theory of Knots and Links". Nonperturbative Quantum Field Theory. NATO ASI Series. Vol. 185. New York: Springer. pp. 71–100. doi:10.1007/978-1-4613-0729-7_4. ISBN1-4612-8053-2.
^
An, Sanghun; Jiang, P.; Choi, H.; Kang, W.; Simon, S. H.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W. (15 December 2011). "Braiding of Abelian and Non-Abelian Anyons in the Fractional Quantum Hall Effect". arXiv:1112.3400 [cond-mat.mes-hall].
Crossover fighting video game 2011 video gameUltimate Marvel vs. Capcom 3Front cover art, designed by Shinkiro, featuring several playable characters from the game.Developer(s)CapcomEightingPublisher(s)CapcomDirector(s)Hiroyuki NaraGo UsumaProducer(s)Ryota NiitsumaArtist(s)Takuro FuseComposer(s)Hideyuki FukasawaSeriesMarvel vs. CapcomEngineMT FrameworkPlatform(s)PlayStation 3Xbox 360PlayStation VitaPlayStation 4WindowsXbox OneReleasePlayStation 3, Xbox 360NA: November 15, 2011JP: November 17,...
United States Navy admiral John H. SidesNickname(s)SavvyBorn(1904-04-22)April 22, 1904Roslyn, Washington, U.S.DiedApril 3, 1978(1978-04-03) (aged 73)San Diego, California, U.S.Place of burialFort Rosecrans National Cemetery, San Diego, CaliforniaAllegianceUnited States of AmericaService/branch United States NavyYears of service1925–1963Rank AdmiralCommands heldUnited States Pacific FleetBattles/warsWorld War IICold WarAwardsNavy DSMLegion of Merit (2)Navy Commendation Medal (2)Alm...
PT Asuransi Jiwa BCAJenisJasa keuanganDidirikanJakarta, Indonesia (2014)Kantorpusat Jakarta, IndonesiaTokohkunciRio C. Winardi (Presiden Direktur)PemilikBank Central AsiaSitus webwww.bcalife.co.id Asuransi Jiwa BCA atau yang lebih dikenal dengan BCA Life adalah perusahaan asuransi jiwa yang berdiri sejak tahun 2014 dan berkantor pusat di Jakarta. Perusahaan tergabung dalam grup BCA. Manajemen Komisaris Utama : Christina W. Setyabudhi Komisaris : Eva Agrayani T. Komisaris Independen&...
150th Special Operations Squadron Boeing C-32B as flown by the squadronActive1956–2008unknown–presentCountry United StatesAllegiance New JerseyBranch Air National GuardRoleTransportPart ofNew Jersey Air National Guard 108th Wing 108th Operations Group Garrison/HQMcGuire Air Force Base, Wrightstown, New JerseyNickname(s)Guardians of the GateMotto(s)Count on Us Bet on Us[citation needed]DecorationsAir Force Outstanding Unit Award[1]Insignia150th Special...
Brazilian footballer (born 1971) In this Portuguese name, the first or maternal family name is de Paula and the second or paternal family name is Nunes. Paulo Nunes Personal informationFull name Arílson de Paula NunesDate of birth (1971-10-30) 30 October 1971 (age 52)Place of birth Pontalina, BrazilHeight 1.74 m (5 ft 9 in)Position(s) Second strikerYouth career FlamengoSenior career*Years Team Apps (Gls)1991–1994 Flamengo 45 (30)1995–1997 Grêmio 44 (27)1997 Benfi...
Multi-purpose stadium in Rabat, Morocco Prince Moulay Abdellah StadiumLocationRabat, MoroccoCoordinates33°57′34″N 6°53′19″W / 33.95944°N 6.88861°W / 33.95944; -6.88861OwnerCity of RabatCapacity50,000Field size105 m × 68 mSurfaceGrassConstructionOpened1983Renovated2000 and 2014Closed2023DemolishedAugust–September 2023TenantsAS FAR (1983–2023) Morocco national football team Prince Moulay Abdellah Stadium (Arabic: المجمع الرياضي ال�...
Australian dancer and choreographer This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Wade Robson – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this mess...
Indonesian PaintingLukisan orang IndonesiaOne of the oldest known figurative paintings in the world, a depiction of a bull, has been dated to be 40,000 years old.[1][2]RegionIndonesian ArchipelagoHistoryPeriodsPaleolithic - Modern Traditional Balinese painting depicting cockfighting Indonesian painting has a very long tradition and history in Indonesian art, though because of the climatic conditions very few early examples survive, Indonesia is home to some of the oldest paint...
For other uses, see Tan. A transaction authentication number (TAN) is used by some online banking services as a form of single use one-time passwords (OTPs) to authorize financial transactions. TANs are a second layer of security above and beyond the traditional single-password authentication. TANs provide additional security because they act as a form of two-factor authentication (2FA). If the physical document or token containing the TANs is stolen, it will be useless without the password. ...
جزء من سلسلة مقالات حولالإسلام حسب البلد الإسلام في إفريقيا أنغولا بنين بوتسوانا بوركينا فاسو بوروندي الكاميرون الرأس الأخضر أفريقيا الوسطى نشاد الجزائر جزر القمر الكونغو الديمقراطية الكونغو ساحل العاج جيبوتي مصر غينيا الاستوائية إريتريا إثيوبيا الغابون غامبيا غانا غي...
Municipality in Andalusia, SpainHiguera de la SierraMunicipality FlagCoat of armsHiguera de la SierraLocation in SpainCoordinates: 37°50′N 6°26′W / 37.833°N 6.433°W / 37.833; -6.433CountrySpainAutonomous communityAndalusiaProvinceHuelvaComarcaSierra de HuelvaArea • Total24 km2 (9 sq mi)Elevation620 m (2,030 ft)Population (2018)[1] • Total1,293 • Density54/km2 (140/sq mi)DemonymHiguer...
Former governor of Uttar Pradesh, India This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: listy prose, lack of structure. Please help improve this article if you can. (August 2015) (Learn how and when to remove this message) This article needs additional citations for verification. Please help i...
Parts of this article (those related to documentation) need to be updated. Please help update this article to reflect recent events or newly available information. (March 2022) Politics of Ukraine Constitution Human rights Presidency President Volodymyr Zelenskyy Office of the President National Security and Defence Council Presidential representatives Presidential symbols Executive Prime Minister Denys Shmyhal Cabinet Shmyhal Government Legislature Verkhovna Rada (parliament) Chairman: Rusl...
XX secolo · XXI secolo · XXII secolo Anni 2000 · Anni 2010 · Anni 2020 · Anni 2030 · Anni 2040 2018 · 2019 · 2020 · 2021 · 2022 · 2023 · 2024 · 2025 · 2026 Il 2022 (MMXXII in numeri romani) è un anno del XXI secolo. 2022 negli altri calendariCalendario gregoriano2022 Ab Urbe condita2775 (MMDCCLXXV) Calendario armeno1470 — 1471 Calendario bengalese1428 — 1429 Calendario berbero2972 Calendario...
Voce principale: Trasporti a Milano. Servizio ferroviario suburbano di MilanoServizio di trasporto pubblicoTreno della linea S6 in sosta a Milano Porta VeneziaTipoServizio ferroviario suburbano Stati Italia Apertura2004 Ultima estensione2024 Linee impiegate12 GestoreTrenordATM Vecchi gestoriTrenitalia, LeNord, TiLo Mezzi utilizzatiTSRTAFE.464+carrozze PRE.464+carrozze 2PE.464+Carrozza VivaltoATR 115-125Caravaggio[1] N. stazioni e fermate124 Lunghezza403 km Passeggeri...
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (January 2019) (Learn how and when to remove this message)Motor vehicle Fiat 515OverviewManufacturerFiatProduction1931–1935Body and chassisBody style4-door sedan4-door landauletteLayoutFR layoutPowertrainEnginestraight-4 1438 ccTransmission4-speed manualDimensionsWhe...
Chiesa di San Donnino alla MazzaStampa settecentesca del fronte della chiesaStato Italia RegioneLombardia LocalitàMilano Coordinate45°28′09.54″N 9°11′36.83″E45°28′09.54″N, 9°11′36.83″E Religionecattolica di rito ambrosiano Arcidiocesi Milano Sconsacrazione1787 Completamento1162 Demolizione1803 Modifica dati su Wikidata · Manuale La chiesa di San Donnino alla Mazza era una chiesa di Milano. Situata in via Bigli, fu demolita nel 1803. Indice 1 Storia 1.1 Il tempi...
Ini adalah nama Korea; marganya adalah Lee. Lee HaneeLee Hanee pada September 2022Lahir2 Maret 1983 (umur 41)Seoul, Korea SelatanNama lainHoney LeeAlmamaterUniversitas Nasional SeoulPekerjaanAktris, PeragawatiAgenSaram EntertainmentTinggi5 ft 8 in (1,73 m)[1]Berat112 pon (51 kg)GelarMiss Korea 2006Miss Universe 2007 (runner up ke-3)Masa jabatan2006PendahuluKim Joo-hee (2005)PenggantiLee Ji-sun (2007)Nama KoreaHangul이하늬 Alih AksaraI Ha-nuiMcCune...