Model in statistical mechanics generalizing the Ising model
In statistical mechanics, the Potts model, a generalization of the Ising model, is a model of interacting spins on a crystalline lattice.[1] By studying the Potts model, one may gain insight into the behaviour of ferromagnets and certain other phenomena of solid-state physics. The strength of the Potts model is not so much that it models these physical systems well; it is rather that the one-dimensional case is exactly solvable, and that it has a rich mathematical formulation that has been studied extensively.
The model is named after Renfrey Potts, who described the model near the end of his 1951 Ph.D. thesis.[2] The model was related to the "planar Potts" or "clock model", which was suggested to him by his advisor, Cyril Domb. The four-state Potts model is sometimes known as the Ashkin–Teller model,[3] after Julius Ashkin and Edward Teller, who considered an equivalent model in 1943.
The Potts model consists of spins that are placed on a lattice; the lattice is usually taken to be a two-dimensional rectangular Euclidean lattice, but is often generalized to other dimensions and lattice structures.
Originally, Domb suggested that the spin takes one of possible values [citation needed], distributed uniformly about the circle, at angles
where and that the interaction Hamiltonian is given by
with the sum running over the nearest neighbor pairs over all lattice sites, and is a coupling constant, determining the interaction strength. This model is now known as the vector Potts model or the clock model. Potts provided the location in two dimensions of the phase transition for . In the limit , this becomes the XY model.
Standard Potts model
What is now known as the standard Potts model was suggested by Potts in the course of his study of the model above and is defined by a simpler Hamiltonian:
where is the Kronecker delta, which equals one whenever and zero otherwise.
The standard Potts model is equivalent to the Ising model and the 2-state vector Potts model, with . The standard Potts model is equivalent to the three-state vector Potts model, with .
Generalized Potts model
A generalization of the Potts model is often used in statistical inference and biophysics, particularly for modelling proteins through direct coupling analysis.[4][6] This generalized Potts model consists of 'spins' that each may take on states: (with no particular ordering). The Hamiltonian is,
where is the energetic cost of spin being in state while spin is in state , and is the energetic cost of spin being in state . Note: . This model resembles the Sherrington-Kirkpatrick model in that couplings can be heterogeneous and non-local. There is no explicit lattice structure in this model.
Physical properties
Phase transitions
Despite its simplicity as a model of a physical system, the Potts model is useful as a model system for the study of phase transitions. For example, for the standard ferromagnetic Potts model in , a phase transition exists for all real values ,[7] with the critical point at . The phase transition is continuous (second order) for [8] and discontinuous (first order) for .[9]
For the clock model, there is evidence that the corresponding phase transitions are infinite order BKT transitions,[10] and a continuous phase transition is observed when .[10] Further use is found through the model's relation to percolation problems and the Tutte and chromatic polynomials found in combinatorics. For integer values of , the model displays the phenomenon of 'interfacial adsorption' [11] with intriguing critical wetting properties when fixing opposite boundaries in two different states [clarification needed].
Relation with the random cluster model
The Potts model has a close relation to the Fortuin-Kasteleynrandom cluster model, another model in statistical mechanics. Understanding this relationship has helped develop efficient Markov chain Monte Carlo methods for numerical exploration of the model at small , and led to the rigorous proof of the critical temperature of the model.[7]
At the level of the partition function , the relation amounts to transforming the sum over spin configurations into a sum over edge configurations i.e. sets of nearest neighbor pairs of the same color. The transformation is done using the identity[12]
This leads to rewriting the partition function as
where the FK clusters are the connected components of the union of closed segments . This is proportional to the partition function of the random cluster model with the open edge probability . An advantage of the random cluster formulation is that can be an arbitrary complex number, rather than a natural integer.
Alternatively, instead of FK clusters, the model can be formulated in terms of spin clusters, using the identity
A spin cluster is the union of neighbouring FK clusters with the same color: two neighbouring spin clusters have different colors, while two neighbouring FK clusters are colored independently.
Measure-theoretic description
The one dimensional Potts model may be expressed in terms of a subshift of finite type, and thus gains access to all of the mathematical techniques associated with this formalism. In particular, it can be solved exactly using the techniques of transfer operators. (However, Ernst Ising used combinatorial methods to solve the Ising model, which is the "ancestor" of the Potts model, in his 1924 PhD thesis). This section develops the mathematical formalism, based on measure theory, behind this solution.
While the example below is developed for the one-dimensional case, many of the arguments, and almost all of the notation, generalizes easily to any number of dimensions. Some of the formalism is also broad enough to handle related models, such as the XY model, the Heisenberg model and the N-vector model.
Topology of the space of states
Let Q = {1, ..., q} be a finite set of symbols, and let
be the set of all bi-infinite strings of values from the set Q. This set is called a full shift. For defining the Potts model, either this whole space, or a certain subset of it, a subshift of finite type, may be used. Shifts get this name because there exists a natural operator on this space, the shift operator τ : QZ → QZ, acting as
that is, the set of all possible strings where k+1 spins match up exactly to a given, specific set of values ξ0, ..., ξk. Explicit representations for the cylinder sets can be gotten by noting that the string of values corresponds to a q-adic number, however the natural topology of the q-adic numbers is finer than the above product topology.
Interaction energy
The interaction between the spins is then given by a continuous functionV : QZ → R on this topology. Any continuous function will do; for example
will be seen to describe the interaction between nearest neighbors. Of course, different functions give different interactions; so a function of s0, s1 and s2 will describe a next-nearest neighbor interaction. A function V gives interaction energy between a set of spins; it is not the Hamiltonian, but is used to build it. The argument to the function V is an element s ∈ QZ, that is, an infinite string of spins. In the above example, the function V just picked out two spins out of the infinite string: the values s0 and s1. In general, the function V may depend on some or all of the spins; currently, only those that depend on a finite number are exactly solvable.
Define the function Hn : QZ → R as
This function can be seen to consist of two parts: the self-energy of a configuration [s0, s1, ..., sn] of spins, plus the interaction energy of this set and all the other spins in the lattice. The n → ∞ limit of this function is the Hamiltonian of the system; for finite n, these are sometimes called the finite state Hamiltonians.
with C0 being the cylinder sets defined above. Here, β = 1/kT, where k is the Boltzmann constant, and T is the temperature. It is very common in mathematical treatments to set β = 1, as it is easily regained by rescaling the interaction energy. This partition function is written as a function of the interaction V to emphasize that it is only a function of the interaction, and not of any specific configuration of spins. The partition function, together with the Hamiltonian, are used to define a measure on the Borel σ-algebra in the following way: The measure of a cylinder set, i.e. an element of the base, is given by
One can then extend by countable additivity to the full σ-algebra. This measure is a probability measure; it gives the likelihood of a given configuration occurring in the configuration spaceQZ. By endowing the configuration space with a probability measure built from a Hamiltonian in this way, the configuration space turns into a canonical ensemble.
Most thermodynamic properties can be expressed directly in terms of the partition function. Thus, for example, the Helmholtz free energy is given by
which will show up as the logarithm of the leading eigenvalue of the transfer operator of the solution.
Free field solution
The simplest model is the model where there is no interaction at all, and so V = c and Hn = c (with c constant and independent of any spin configuration). The partition function becomes
If all states are allowed, that is, the underlying set of states is given by a full shift, then the sum may be trivially evaluated as
If neighboring spins are only allowed in certain specific configurations, then the state space is given by a subshift of finite type. The partition function may then be written as
where card is the cardinality or count of a set, and Fix is the set of fixed points of the iterated shift function:
The q × q matrix A is the adjacency matrix specifying which neighboring spin values are allowed.
Interacting model
The simplest case of the interacting model is the Ising model, where the spin can only take on one of two values, sn ∈ {−1, 1} and only nearest neighbor spins interact. The interaction potential is given by
This potential can be captured in a 2 × 2 matrix with matrix elements
with the index σ, σ′ ∈ {−1, 1}. The partition function is then given by
The general solution for an arbitrary number of spins, and an arbitrary finite-range interaction, is given by the same general form. In this case, the precise expression for the matrix M is a bit more complex.
The Potts model has applications in signal reconstruction. Assume that we are given noisy observation of a piecewise constant signal g in Rn. To recover g from the noisy observation vector f in Rn, one seeks a minimizer of the corresponding inverse problem, the Lp-Potts functional Pγ(u), which is defined by
The jump penalty forces piecewise constant solutions and the data term couples the minimizing candidate u to the data f. The parameter γ > 0 controls the tradeoff between regularity and data fidelity. There are fast algorithms for the exact minimization of the L1 and the L2-Potts functional.[13]
In image processing, the Potts functional is related to the segmentation problem.[14] However, in two dimensions the problem is NP-hard.[15]
^Duminil-Copin, Hugo; Gagnebin, Maxime; Harel, Matan; Manolescu, Ioan; Tassion, Vincent (2017-09-05). "Discontinuity of the phase transition for the planar random-cluster and Potts models with $q>4$". arXiv:1611.09877 [math.PR].
Doliops villalobosi Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Doliops Spesies: Doliops villalobosi Doliops villalobosi adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Doliops, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidu...
Tudung dengan hiasan dari bulu Anjing rakun (Kanada, 2017) Jaket bolak-balik yang terbuat dari Coypu (2008) Seorang pria Prancis-Kanada mengenakan mantel bulu dan topi sekitar tahun 1910 Pakaian bulu adalah pakaian yang terbuat dari bulu yang diambil dari kulit binatang. Pakaian bulu adalah salah satu bentuk pakaian tertua dan diperkirakan telah banyak digunakan ketika hominid mulai menyebar ke luar dari Afrika. Sebagian orang menganggap pakaian bulu sebagai mewah dan hangat, namun sebagian l...
Komposisi tanah berdasarkan fase: s = soil (tanah), (komponen kering); v = void (kosong atau rongga) (pori-pori tanah yang terisi oleh air dan/atau udara); w = water (air); a = air (udara). V adalah volume dan M adalah massa. Kadar air adalah sejumlah air yang terkandung di dalam suatu benda, seperti tanah (yang disebut juga kelembapan tanah), bebatuan, bahan pertanian, dan sebagainya. Kadar air digunakan secara luas dalam bidang ilmiah dan teknik dan diekspresikan dalam rasio, dari 0 (kering...
2015 studio album by EskaESKAStudio album by EskaReleased27 April 2015GenreNeofolkexperimental folkpopLength35:17LabelNaimEarthling RecordingsProducerEskaMatthew HerbertDavid OkumuLeroy RobinsonJohn McLaughlinLouis HackettEska chronology Gatekeeper(2013) ESKA(2015) ESKA is the eponymous debut album of British singer-songwriter Eska, released on 27 April 2015.[1] The album was released in collaboration with Naim Records and Eska's own Earthling Recordings. It was shortlisted f...
Township in Minnesota, United StatesFrohn Township, MinnesotaTownshipFrohn TownshipLocation within the state of MinnesotaCoordinates: 47°26′47″N 94°43′35″W / 47.44639°N 94.72639°W / 47.44639; -94.72639CountryUnited StatesStateMinnesotaCountyBeltramiArea • Total36.4 sq mi (94.2 km2) • Land32.4 sq mi (84.0 km2) • Water3.9 sq mi (10.2 km2)Elevation1,332 ft (406 m)Popula...
Bronkus adalah kaliber jalan udara berupa dua percabangan utama dari trakea [1]pada sistem pernapasan yang membawa udara ke paru-paru. Tidak terdapat pertukaran udara yang terjadi pada bagian paru-paru ini. Bronkitis merupakan peradangan pada bronkus. Terdapat dua tipe utama, yakni akut dan kronik. Bronkitis akut biasanya disebabkan oleh infeksi virus atau bakteri. Galeri Referensi ^ Parker, Sybil, P (1984). McGraw-Hill Dictionary of Biology. McGraw-Hill Company. Parameter ...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) ألفريدو باي معلومات شخصية الميلاد 27 نوفمبر 1913 تورينو الوفاة يونيو 1980 (66–67 سنة) جيافينو مواطنة إيطاليا (18 يونيو 1946–1 يونيو 1980) مملكة إيطاليا (27 ...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. SMA Negeri 10 MakassarInformasiJurusan atau peminatanIPA dan IPSRentang kelasX, XI IPA, XI IPS, XII IPA, XII IPSKurikulumKurikulum Tingkat Satuan PendidikanAlamatLokasiJl. Tamangapa Raya V/12, Makassar, Sulawesi SelatanMoto SMA Negeri (SMAN) 10 Makassar,...
Physical characteristics of Guinea This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Geography of Guinea – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this message)A map showing Guinea's cities and administrative divisions. Location of Guinea Guinea is a country on th...
For other uses, see Lenger (disambiguation). Place in Turkistan, KazakhstanLengerLengerLocation in KazakhstanCoordinates: 42°10′55″N 69°53′16″E / 42.18194°N 69.88778°E / 42.18194; 69.88778CountryKazakhstanRegionTurkistanArea • Total2,047 km2 (790 sq mi)Population (2012) • Total25,298Time zoneUTC+6 (UTC+6)ClimateDsa Lenger (Kazakh: Леңгір, Leñgır,لەڭگىر; Russian: Ленгер) is a city in Tole Bi Dis...
Proverbs 17← chapter 16chapter 18 →The whole Book of Proverbs in the Leningrad Codex (1008 C.E.) from an old fascimile edition.BookBook of ProverbsCategoryKetuvimChristian Bible partOld TestamentOrder in the Christian part21 Proverbs 17 is the seventeenth chapter of the Book of Proverbs in the Hebrew Bible or the Old Testament of the Christian Bible.[1][2] The book is a compilation of several wisdom literature collections, with the heading in 1:1 may be intended ...
Study of the culture of (mainly) Ancient Greece and Ancient Rome This article is about the academic discipline. For other uses, see Classics (disambiguation). Classical literature redirects here. For literature from the ancient world in general, see Ancient literature. For exemplary or noteworthy books, see Classic book. Classicist redirects here. For the art movement, see Classicism. For the discrimination based on class, see Classism. Homer, the legendary Greek author of the Iliad and Odyss...
العلاقات المجرية الوسط أفريقية المجر جمهورية أفريقيا الوسطى المجر جمهورية أفريقيا الوسطى تعديل مصدري - تعديل العلاقات المجرية الوسط أفريقية هي العلاقات الثنائية التي تجمع بين المجر وجمهورية أفريقيا الوسطى.[1][2][3][4][5] مقارنة بين البلد...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) كأس إيطاليا 1984–85 تفاصيل الموسم كأس إيطاليا النسخة 38 البلد إيطاليا التاريخ بداية:22 أغسطس 1984 ...
AltenJenisSociété anonyme (Euronext: ATE)IndustriRekayasa dan layanan TIDidirikan1988KantorpusatBoulogne-BillancourtTokohkunciSimon Azoulay, CEOKaryawan33,800Situs webwww.alten.com Alten adalah perusahaan konsultan teknik dan teknologi multinasional Prancis dan perusahaan layanan digital (ESN) yang didirikan pada tahun 1988. Perusahaan ini hadir di lebih dari dua puluh delapan negara dan mempekerjakan 33.800 orang, yang sebagian besar adalah konsultan, pada akhir tahun 2020. Alten mena...
Kumar Bhaskar Varma Sanskrit and Ancient Studies UniversityMottoSarasvati Srutimahatam Mahiyatam (Kālidāsa)Motto in EnglishMay the sayings of the wise be glorifiedTypePublicEstablished2011 (13 years ago) (2011)ChancellorGovernor of AssamVice-ChancellorProf. Pralhad R. JoshiAddressNamati village, Nalbari, Assam, 781337, India26°29′N 91°27′E / 26.48°N 91.45°E / 26.48; 91.45CampusUrbanAffiliationsUGCWebsitewww.kbvsasun.ac.in Kumar Bhaskar Var...
Radio station in Ashland–Columbia, Missouri This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: KOQL – news · newspapers · books · scholar · JSTOR (October 2022) (Learn how and when to remove this message) KOQLAshland, MissouriBroadcast areaColumbia-Jefferson City and surrounding areasFrequency106.1 MHzBrandingQ 106.1Programmin...
هيرهوخوفاردHeerhugowaard بلدية صور من أعلى، من اليسار إلى اليمين: Stad van de Zon، طاحونة هواء فينهاوزر، مسرح كول، هيرهوخوفارد. علم هيرهوخوفاردHeerhugowaardعلمشعار هيرهوخوفاردHeerhugowaardشعار Highlighted position of Heerhugowaard in a municipal map of North Hollandالموقع في شمال-هولندا الإحداثيات 52°40′N 4°50′E /...
Formula for the derivative of a product This article is about the derivative of a product. For the relation between derivatives of 3 dependent variables, see Triple product rule. For a counting principle in combinatorics, see Rule of product. For conditional probabilities, see Chain rule (probability). Geometric illustration of a proof of the product rule Part of a series of articles aboutCalculus ∫ a b f ′ ( t ) d t = f ( b ) − f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,...
2005–2019 false allegations of fraud This article needs to be updated. Please help update this article to reflect recent events or newly available information. (December 2021) You can help expand this article with text translated from the corresponding article in Dutch. (December 2021) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and ...