Abstract Wiener space

The concept of an abstract Wiener space is a mathematical construction developed by Leonard Gross to understand the structure of Gaussian measures on infinite-dimensional spaces. The construction emphasizes the fundamental role played by the Cameron–Martin space. The classical Wiener space is the prototypical example.

The structure theorem for Gaussian measures states that all Gaussian measures can be represented by the abstract Wiener space construction.

Motivation

Let be a real Hilbert space, assumed to be infinite dimensional and separable. In the physics literature, one frequently encounters integrals of the form

where is supposed to be a normalization constant and where is supposed to be the non-existent Lebesgue measure on . Such integrals arise, notably, in the context of the Euclidean path-integral formulation of quantum field theory. At a mathematical level, such an integral cannot be interpreted as integration against a measure on the original Hilbert space . On the other hand, suppose is a Banach space that contains as a dense subspace. If is "sufficiently larger" than , then the above integral can be interpreted as integration against a well-defined (Gaussian) measure on . In that case, the pair is referred to as an abstract Wiener space.

The prototypical example is the classical Wiener space, in which is the Hilbert space of real-valued functions on an interval having first derivative in and satisfying , with the norm being given by

In that case, may be taken to be the Banach space of continuous functions on with the supremum norm. In this case, the measure on is the Wiener measure describing Brownian motion starting at the origin. The original subspace is called the Cameron–Martin space, which forms a set of measure zero with respect to the Wiener measure.

What the preceding example means is that we have a formal expression for the Wiener measure given by

Although this formal expression suggests that the Wiener measure should live on the space of paths for which , this is not actually the case. (Brownian paths are known to be nowhere differentiable with probability one.)

Gross's abstract Wiener space construction abstracts the situation for the classical Wiener space and provides a necessary and sufficient (if sometimes difficult to check) condition for the Gaussian measure to exist on . Although the Gaussian measure lives on rather than , it is the geometry of rather than that controls the properties of . As Gross himself puts it[1] (adapted to our notation), "However, it only became apparent with the work of I.E. Segal dealing with the normal distribution on a real Hilbert space, that the role of the Hilbert space was indeed central, and that in so far as analysis on is concerned, the role of itself was auxiliary for many of Cameron and Martin's theorems, and in some instances even unnecessary." One of the appealing features of Gross's abstract Wiener space construction is that it takes as the starting point and treats as an auxiliary object.

Although the formal expressions for appearing earlier in this section are purely formal, physics-style expressions, they are very useful in helping to understand properties of . Notably, one can easily use these expressions to derive the (correct!) formula for the density of the translated measure relative to , for . (See the Cameron–Martin theorem.)

Mathematical description

Cylinder set measure on H

Let be a Hilbert space defined over the real numbers, assumed to be infinite dimensional and separable. A cylinder set in is a set defined in terms of the values of a finite collection of linear functionals on . Specifically, suppose are continuous linear functionals on and is a Borel set in . Then we can consider the set

Any set of this type is called a cylinder set. The collection of all cylinder sets forms an algebra of sets in but it is not a -algebra.

There is a natural way of defining a "measure" on cylinder sets, as follows. By the Riesz representation theorem, the linear functionals are given as the inner product with vectors in . In light of the Gram–Schmidt procedure, it is harmless to assume that are orthonormal. In that case, we can associate to the above-defined cylinder set the measure of with respect to the standard Gaussian measure on . That is, we define where is the standard Lebesgue measure on . Because of the product structure of the standard Gaussian measure on , it is not hard to show that is well defined. That is, although the same set can be represented as a cylinder set in more than one way, the value of is always the same.

Nonexistence of the measure on H

The set functional is called the standard Gaussian cylinder set measure on . Assuming (as we do) that is infinite dimensional, does not extend to a countably additive measure on the -algebra generated by the collection of cylinder sets in . One can understand the difficulty by considering the behavior of the standard Gaussian measure on given by

The expectation value of the squared norm with respect to this measure is computed as an elementary Gaussian integral as

That is, the typical distance from the origin of a vector chosen randomly according to the standard Gaussian measure on is As tends to infinity, this typical distance tends to infinity, indicating that there is no well-defined "standard Gaussian" measure on . (The typical distance from the origin would be infinite, so that the measure would not actually live on the space .)

Existence of the measure on B

Now suppose that is a separable Banach space and that is an injective continuous linear map whose image is dense in . It is then harmless (and convenient) to identify with its image inside and thus regard as a dense subset of . We may then construct a cylinder set measure on by defining the measure of a cylinder set to be the previously defined cylinder set measure of , which is a cylinder set in .

The idea of the abstract Wiener space construction is that if is sufficiently bigger than , then the cylinder set measure on , unlike the cylinder set measure on , will extend to a countably additive measure on the generated -algebra. The original paper of Gross[2] gives a necessary and sufficient condition on for this to be the case. The measure on is called a Gaussian measure and the subspace is called the Cameron–Martin space. It is important to emphasize that forms a set of measure zero inside , emphasizing that the Gaussian measure lives only on and not on .

The upshot of this whole discussion is that Gaussian integrals of the sort described in the motivation section do have a rigorous mathematical interpretation, but they do not live on the space whose norm occurs in the exponent of the formal expression. Rather, they live on some larger space.

Universality of the construction

The abstract Wiener space construction is not simply one method of building Gaussian measures. Rather, every Gaussian measure on an infinite-dimensional Banach space occurs in this way. (See the structure theorem for Gaussian measures.) That is, given a Gaussian measure on an infinite-dimensional, separable Banach space (over ), one can identify a Cameron–Martin subspace , at which point the pair becomes an abstract Wiener space and is the associated Gaussian measure.

Properties

  • is a Borel measure: it is defined on the Borel σ-algebra generated by the open subsets of B.
  • is a Gaussian measure in the sense that f() is a Gaussian measure on R for every linear functional fB, f ≠ 0.
  • Hence, is strictly positive and locally finite.
  • The behaviour of under translation is described by the Cameron–Martin theorem.
  • Given two abstract Wiener spaces i1 : H1B1 and i2 : H2B2, one can show that . In full: i.e., the abstract Wiener measure on the Cartesian product B1 × B2 is the product of the abstract Wiener measures on the two factors B1 and B2.
  • If H (and B) are infinite dimensional, then the image of H has measure zero. This fact is a consequence of Kolmogorov's zero–one law.

Example: Classical Wiener space

The prototypical example of an abstract Wiener space is the space of continuous paths, and is known as classical Wiener space. This is the abstract Wiener space in which is given by with inner product given by and is the space of continuous maps of into starting at 0, with the uniform norm. In this case, the Gaussian measure is the Wiener measure, which describes Brownian motion in , starting from the origin.

The general result that forms a set of measure zero with respect to in this case reflects the roughness of the typical Brownian path, which is known to be nowhere differentiable. This contrasts with the assumed differentiability of the paths in .

See also

References

  • Bell, Denis R. (2006). The Malliavin calculus. Mineola, NY: Dover Publications Inc. p. x+113. ISBN 0-486-44994-7. MR 2250060. (See section 1.1)
  • Gross, Leonard (1967). "Abstract Wiener spaces". Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1. Berkeley, Calif.: Univ. California Press. pp. 31–42. MR 0212152.
  • Kuo, Hui-Hsiung (1975). Gaussian measures in Banach spaces. Berlin–New York: Springer. p. 232. ISBN 978-1419645808.

Read other articles:

Kompleks Candi Dieng. Kompleks Candi Dieng adalah kelompok kompleks candi Hindu abad ke-7 terletak di Dataran Tinggi Dieng, Kabupaten Banjarnegara, Jawa Tengah, Indonesia.[1] Kompleks yang terdiri dari beberapa bangunan ini berasal dari Kerajaan Kalingga.[2]:79,90 Kawasan dataran tinggi ini merupakan tempat berdirinya delapan candi Hindu kecil yang merupakan salah satu bangunan keagamaan tertua yang masih bertahan yang pernah dibangun di Jawa. Nama sebenarnya dari candi terseb...

 

 

Collingwood CollegeUniversitas DurhamCollingwood CollegeLambang kebesaran Collingwood College                 LokasiElvet Hill Rd, Durham DH1 3LNMotoPrancis: Aime le meilleurcode: fr is deprecated Moto dalam bahasa InggrisLove the best (Cinta yang terbaik)Didirikan1972; 52 tahun lalu (1972)Dinamakan atasEdward CollingwoodGenderKo-edukasiPrasyarat keanggotaanTidak ada prasyarat Kepala koleseJulian Elliott[1]Wakil KepalaEmma Br...

 

 

سلاح المدفعية الملكي الأردني الدولة  الأردن الإنشاء 1921 جزء من القوات البرية الملكية الأردنية تعديل مصدري - تعديل   سلاح المدفعية الملكي الأردني هو أحد تشكيلات الجيش العربي تأسس في نيسان من عام 1921. وابتداءاً من عام 1941 أخذ سلاح المدفعية بالتطور شيئاً فشيئاً؛ إذ سُلّح بم...

Non-profit, non-partisan research organization in the US Not to be confused with Smart Voting in Russia. Vote SmartFormation1992[1]Headquarters1153 24th Street, Des Moines, Iowa 50311PresidentKyle DellWebsitevotesmart.orgFormerly calledProject Vote Smart Vote Smart, formerly called Project Vote Smart, is an American non-profit, non-partisan[2][3] research organization that collects and distributes information on candidates for public office in the United States. It cov...

 

 

Richard Wagner Wilhelm Richard Wagner (22 Mei 1813 – 13 Februari 1883) adalah seorang komponis musik romantik berpengaruh Jerman, pakar teori musik, dan penulis, namun paling terkenal melalui karya operanya. Musiknya masih sering dimainkan, yang paling terkenal adalah Ride of the Valkyries dari Die Walküre dan Bridal Chorus dari Lohengrin. Wagner juga merupakan seorang tokoh yang sangat kontroversial, karena inovasi musik dan inovasi dramanya dan juga karena dia adalah seoran...

 

 

Narayan Dutta Ojha Hakim Mahkamah Agung IndiaMasa jabatan18-01-1988–18-01-1991 Informasi pribadiKebangsaanIndiaProfesiHakimSunting kotak info • L • B Narayan Dutta Ojha adalah hakim Mahkamah Agung India. Ia mulai menjabat sebagai hakim di mahkamah tersebut pada 18-01-1988. Masa baktinya sebagai hakim berakhir pada 18-01-1991.[1] Referensi ^ Daftar Hakim di Mahkamah Agung India. Mahkamah Agung India. Diakses tanggal 10 Juni 2021.  Artikel bertopik biografi India in...

American politician from Massachusetts For other people with the same name, see Henry Dwight (disambiguation). Henry W. DwightPortrait of Henry W. Dwight by John Trumbull, 1827. Yale University Art GalleryMember of theU.S. House of Representatives from MassachusettsIn officeMarch 4, 1821 – March 3, 1831Preceded byHenry ShawSucceeded byGeorge N. BriggsConstituency7th district (1821–23)9th district (1823–31) Personal detailsBorn(1788-02-26)February 26, 1788Stockbridge, Massachuse...

 

 

Haementeria ghilianii TaksonomiKerajaanAnimaliaFilumAnnelidaKelasClitellataOrdoRhynchobdellidaFamiliGlossiphoniidaeGenusHaementeriaSpesiesHaementeria ghilianii Filippi, 1849 lbs Haementaria ghilianii, atau lintah raksasa Amazon, adalah salah satu spesies lintah terbesar di dunia.[1] Lintah ini dapat tumbuh mencapai panjang 45 cm dan lebar 10 cm. Hewan dewasa spesies ini memiliki warna cokelat-keabuan, sedangkan hewan muda memiliki warna loreng atau bercorak. Hewan ini dapat ditemukan...

 

 

Questa voce o sezione sull'argomento stagioni delle società calcistiche italiane non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggeri...

Contea di HowardconteaLocalizzazioneStato Stati Uniti Stato federato Texas AmministrazioneCapoluogoBig Spring Data di istituzione1876 TerritorioCoordinatedel capoluogo32°18′36″N 101°26′24″W / 32.31°N 101.44°W32.31; -101.44 (Contea di Howard)Coordinate: 32°18′36″N 101°26′24″W / 32.31°N 101.44°W32.31; -101.44 (Contea di Howard) Superficie2 342 km² Abitanti35 012 (2010) Densità14,95 ab./km² Altre informazioni...

 

 

  关于与「华盛顿州」標題相近或相同的条目页,請見「华盛顿」。   此條目介紹的是美國西北部太平洋沿岸的州。关于与之同名的美国首都所在地,请见「華盛頓哥伦比亚特区」。 此條目需要擴充。 (2007年9月26日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 华盛顿州 美國联邦州State of Washington...

 

 

Brand of chocolate-covered digestive biscuit from Nestlé This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Breakaway biscuit – news · newspapers · books · scholar · JSTOR (August 2010) (Learn how and when to remove this message) BreakawayProduct typeDigestive biscuitOwnerNestléCountryUnited KingdomIntroduced1970; 54 years ago (197...

Planetary nebula in the constellation Norma Shapley 1/Sp 1Emission nebulaPlanetary nebulaFine Ring Nebula — captured here by the ESO Faint Object Spectrograph and Camera mounted on the New Technology Telescope at the La Silla Observatory in Chile.[1] Credit ESO.Observation data: J2000 epochRight ascension15h 51m 42.75sDeclination−51° 31′ 30.5″Distance~4900[2] lyApparent magnitude (V)12.6Apparent dimensions (V)1.1'ConstellationNormaPhysical c...

 

 

  关于与「內閣總理大臣」標題相近或相同的条目页,請見「內閣總理大臣 (消歧義)」。 日本國內閣總理大臣內閣總理大臣紋章現任岸田文雄自2021年10月4日在任尊称總理、總理大臣、首相、阁下官邸總理大臣官邸提名者國會全體議員選出任命者天皇任期四年,無連任限制[註 1]設立法源日本國憲法先前职位太政大臣(太政官)首任伊藤博文设立1885年12月22日,...

 

 

Emergency gas supply cylinder carried by a diver Bailout bottleFilling a spare air bailout cylinderOther namesBailout cylinder, emergency gas supplyUsesEmergency supply of breathing gasRelated itemsPony bottle A bailout bottle (BoB) or, more formally, bailout cylinder is a scuba cylinder carried by an underwater diver for use as an emergency supply of breathing gas in the event of a primary gas supply failure. A bailout cylinder may be carried by a scuba diver in addition to the primary scuba...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: One for the Boys Connie Francis album – news · newspapers · books · scholar · JSTOR (September 2021) (Learn how and when to remove this message) 2023 studio album by Connie FrancisOne for the BoysStudio album by Connie FrancisReleased2023RecordedAu...

 

 

Commentaria in Aphorismos Hippocratis, 1533 Oribasio di Pergamo (Pergamo, 325 – 403) è stato un medico e scrittore greco antico. Indice 1 Biografia 2 Opere 2.1 Collectiones medicae 2.2 I Compendi 3 Importanza e fortuna di Oribasio 4 Note 5 Bibliografia 6 Voci correlate 7 Altri progetti 8 Collegamenti esterni Biografia Oribasio, nato a Pergamo nel 325 e morto a Bisanzio nel 403, medico e scrittore dell'impero romano, è stato il più influente tra i medici greci post-galenici. Proveniva da ...

 

 

TUI

För det tidigare Fritidsresor, se TUI Sverige. För andra betydelser, se Tui. TUI:s koncernhuvudkontor i Hannover. Thomsonfly Boeing 757. TUI eller TUI Group är en turismkoncern där moderbolaget TUI AG har sitt säte i Hannover i Tyskland. TUI Group verkar inom två affärsområden: Tourism Business och Specialist Travel. TUI Group har 30 miljoner kunder per år och 76 000 anställda och flyger från 25 länder.[1] TUI Sverige, TUI Nordic, Finnmatkat i Finland och Marmara i ...

1945 1946 (II) Élections constituantes de 1946 dans les Hautes-Pyrénées le 2 juin 1946 Type d’élection Élection législative Postes à élire 3 députés modifier - modifier le code - voir Wikidata  Les élections constituantes françaises de 1946 se tiennent le 2 juin. Ce sont les deuxièmes élections constituantes, après le rejet du Projet de constitution française du 19 avril 1946 lors du référendum du 5 mai. Mode de scrutin L'assemblée constituante est composée de...

 

 

Prima Divisione 1936-37Formazione della S.S. Parioli Roma Campione d'Italia di Prima DivisioneDettagli della competizioneSport Pallacanestro Edizione7ª OrganizzatoreFIP Federazione FIP Periodo29 novembre 1936 —23 maggio 1937 Data1937 Squadre63  (in 16 gironi) VerdettiCampioneSocietà Sportiva Parioli Roma(1º titolo) Cronologia della competizioneed. successiva →     ← ed. precedente Modifica dati su Wikidata · Manuale La Prima Divisione 1936-1937 ...